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Abstract. Genetic Programming is widely used to build predictive mod-
els for defect proneness or development efforts. The predictive modelling
often depends on the use of sensitive data, related to past faults or inter-
nal resources, as training data. We envision a scenario in which revealing
the training data constitutes a violation of privacy. To ensure organisa-
tional privacy in such a scneario, we propose SMCGP, a method that
performs Genetic Programming as Secure Multiparty Computation. In
SMCGP, one party uses GP to learn a model of training data provided
by another party, without actually knowing each datapoint in the train-
ing data. We present an SMCGP approach based on the garbled circuit
protocol, which is evaluated using two problem sets: a widely studied
symbolic regression benchmark, and a GP-based fault localisation tech-
nique with real world fault data from Defects4J benchmark. The results
suggest that SMCGP can be equally accurate as the normal GP, but the
cost of keeping the training data hidden can be about three orders of
magnitude slower execution.

1 Introduction

Genetic Programming is a variant of Genetic Algorithm that evolves programs
and expressions instead of solutions [22]. While its recent popularity for Auto-
mated Program Repair (APR) [7,32] is closely related to GP’s original ambition
of automated programming, it has also been widely used by SBSE community
to build predictive models for defect prediction [18], development effort pre-
diction [6], and software quality estimation [17]. Recently, GP has also been
successfully used to produce ranking models for fault localisation [12,27].

While GP has been successfully applied to various problem domains, its ap-
plication to each of the above domains requires access to potentially sensitive
past data, such as historial defect pronenss data, information about internal re-
sources and project cost, quality metrics, and test coverage data. GP uses the
past data either to perform symbolic regression to find a model that fits the
past results the best or to build ranking model that places the faulty program
element as high in a ranking as possible.

The requirement on the use of sensitive past data raises a concern for both re-
searchers and practitioners. It is difficult for researchers to study real world data,
because data related to defects or internl resources can be regarded as highly



sensitive and may not be disclosed to external researchers. For practitioners,
this rules out any form of Optimisation-as-a-Service type analysis. Hence we ask
the following question: is it possible to apply GP to learn predictive or ranking
models for software engineering, without revealing sensitive data for training?

This paper proposes a method that allows data to be hidden from GP, us-
ing Secure Multiparty Computation (SMC) [4], as an answer to our research
question. SMC is a subdomain of cryptography whose goal is to enable mul-
tiple parties to jointly compute a function over their inputs while keeping the
inputs hidden from each other. We instantiate Secure Multiparty Computation
GP (SMCGP) using an SMC protocol called garbled circuits [35], and show
that GP can be performed while not revealing the individual datapoints without
loss of accuracy. We empirically evaluate the performance of SMCGP using a
range of symbolic regression benchmark problems, as well as training of GP-
based fault localisation model [27] using a real world fault data from Defects4J
benchmark [11].

The technical contributions of this paper are as follows:

– We introduce the concept of SMCGP, the goal of which is to perform GP
while remaining oblivious to the training data.

– We present an empirical study of well known symbolic regression benchmark
problems, as well as a GP-based fault localisation technique in conjunction
with the Defects4J repository. The results show that SMCGP is feasible
without loss of accuracy, but requires significantly longer execution time.

Section 2 introduces Oblivious Transfer and Garbled Circuit, which is used
to formulate SMCGP described in Section 3. Section 4 presents the experimental
setup. Section 5 discusses the experimental results. Section 6 presents the threats
to validity, and Section 7 contains the related work. Section 8 concludes.

2 Background

Secure Multiparty Computation (SMC) aims to perform distributed computa-
tion that involves multiple parties in a secure manner. In particular, its aim is
to maintain each party’s input to the computation process oblivious to other
involved parties, while ensuring that the results are correct and uncorrupted.

Perhaps the most widely known example of SMC is the Yao’s millionaires’
problem, introduced by Andrew Yao [35]. Suppose there are two millionaires:
both want to know who is richer without revealing the exact amount of one’s
wealth to the other. More formally, assume that there exist n participants,
p1, . . . , pn, each of which is holding private data, d1, . . . , dn. SMC aims to com-
pute the value of a public function over the set of all private data, i.e., F (d1, . . . , dn),
while all participants keep their own data private.

Yao suggested the garbled circuit protocol, also known as Yao’s protocol,
to achieve secure computation between two parties (2PC). For more than two
parties (MPC), secret sharing schemes such as Shamir Secret Sharing [26] are
used. We formulate our GP under the 2PC context using garbled circuits, which
is explained in the rest of this section.



2.1 Oblivious Transfer

In cryptography, oblivious transfer refers to a scenario in which the sender trans-
fers one out of many possible messages without knowing what message has actu-
ally been transferred. Our choice of SMC, garbled circuits, is based on a specific
type of oblivious transfer called 1-2 oblivious transfer [5]. Under the 1-2 obliv-
ious transfer protocol, the sender has two strings, S0 and S1, and the receiver
chooses i ∈ {0, 1}. After the transfer, the sender should not know which value of
i the receiver chose, and the receiver should not know S1−i (i.e., the string not
chosen by the receiver).

The 1-2 oblivious transfer protocol can be implemented over asymmetric
cryptography, such as the RSA [23]. The following is a brief description of Obliv-
ious Transfer. Suppose Alice has two messages, m0 and m1, and Bob has a bit b.
Bob wants to receive mb without the sender knowing b. Let N = pq, where both
p and q are large prime numbers; let e be relatively prime to (p− 1)(q− 1). The
encryption of message m is me mod N . The transfer takes place as follows:

1. Alice generates an RSA key pair and sends the public exponent e to Bob.
The private exponent, d, is secret.

2. Alice also generates and sends two random messages, x0 and x1, to Bob.
3. Bob chooses b ∈ {0, 1}, and generates a random k. Bob then sends v = (xb +
ke) mod N (i.e., encryption of k blind to xb) to Alice.

4. Alice computes k0 = (v − x0)d mod N and k1 = (v − x1)d mod N . Alice
knows k is one of these values, but does not know which.

5. Alice sends m′0 = m0 + k0 and m′1 = m1 + k1 to Bob.
6. Bob decrypts m′b because Bob knows which xb was chosen earlier.

Alice cannot determine which of x0 and x1 Bob chose. Bob cannot know the
message he did not choose, as he can only unblind the message mb with his k.

2.2 Garbled Circuit

The oblivious transfer deals with the secure transfer of messages: let us now turn
to computation of functions for SMC. Garbled Circuit is a cryptographic protocol
for two party secure computation. Intuitively, it operates by representing the
function to be computed as a Boolean circuit and sending the circuit using the
1-2 oblivious transfer. We outline the process of garbled circuit transfer with a
simple working example below:

1. Convert the function to be computed into a Boolean circuit with 2-input
gates. As an working example, we are going to assume that our function
itself is a logical AND. Table 1(a) shows the raw truth table.

2. Alice, the garbler, replaces 0s and 1s in the truth table with randomly gen-
erated string labels. The result is shown in Table 1(b).

3. Alice encrypts the output column(s) of the truth table with corresponding
input labels. Alice also permutes the encrypted output rows so that the
values cannot be guessed from the order (hence the name garbled).
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Table 1: Garbled Circuit Operation on F (a, b) = AND(a, b): (a) the raw truth
table, (b) Alice assigns random string labels to values in the truth table, (c) the
output garbled table that is transferred.

4. Alice sends the encrypted circuit to Bob, along with her inputs. For example,
if Alice’s input for a is 1, Alice sends Xa

0 . Since Alice generated the labels
randomly, Bob does not know what Alice’s actual input is.

5. In order to obtain the result, Bob needs the labels for his input. If Bob’s
input for b is 0, Bob asks for b = 0 between Xb

0 and Xb
1 through 1-2 oblivious

transfer, after which Alice does not know which Bob chose between Xb
0 and

Xb
1 and Bob does not know what the other label (in our case Xb

1) is.

6. Bob tries to decrypt each output row: he can only decrypt a single row,
which is the output for the input from both Alice and Bob.

While our small working example only concerns a single logical operator as
the function of interest, one can convert an arbitrary function into an optimised
Boolean circuit [28] and apply the outlined process to the truth table of each
2-input gate within the circuit. By repeatedly applying the above process, Alice
and Bob can securely compute the garbled circuit. The cost of privacy is the
runtime overhead that stems from encryption and decryption as well as the
conversion and execution of arbitrary functions as Boolean circuits.

2.3 Obliv-C

Obliv-C [37] is both a domain specific extension of C and a gcc wrapper that
compiles the extension.3 It is designed for developers to easily implement 2PC
Secure Multiparty Computation: Obliv-C provides high-level interface to SMC
via language extension, performs the Boolean circuit conversion, and handles
the garbled circuit protocol. It has been applied to various privacy preserving
machine learning scenarios [9, 29] as well as to email communications [10].

While we leave the low level implementation details of Obliv-C out in this
paper (please refer to the original paper [37] for all the details), let us focus on
two core language constructs, obliv qualifier and obliv if statement.

3 It is available from https://oblivc.org.



– obliv: this qualifier denotes variables whose values need to remain oblivi-
ous. All oblivious variables are declared with the qualifier and assigned with
actual values transferred from the garbled circuit protocol.

– obliv if: to prevent information leak from control flow, Obliv-C converts
all control dependencies into data dependencies. This means that the body
of obliv if will be always executed, regardless of how the branch predicate
evaluates. When the predicate is false, the garbled circuit ensures that the
values computed inside the block are simply ignored.

Figure 1 shows an example code of Obliv-C for the Yao’s millionaires’
problem. Variable a and b represent the wealth of two millionaires respectively.
Using the function feedOblivInt, a and b are converted into an obliv qualified
integers. The following if statement at Line 13 is a obliv if statement, because
it makes a comparison between obliv qualified values. The result of comparison
between a and b is stored in result, which is also obliv qualified variable.
Finally, the call to revealOblivBool ensures that only the result is revealed
to each party at the end of computation.

1 #include <million.h>
2 #include <obliv.oh>
3

4 void millionaire (void *args) {
5 ProtocolIO *io = args;
6 obliv int a, b;
7 obliv bool result = false;
8 a = feedOblivInt (io->myinput, 1);
9 b = feedOblivInt (io->myinput, 2);

10 obliv if (a < b) result = true;
11 revealOblivBool (&io->result, result, 0);
12 }

Figure 1: An Obliv-C program that implements Yao’s Millionaires’ Problem
taken from Zahur et al. [37].

3 Secure Multiparty Computation GP using Obliv-C

In GP, the majority of the computation takes place during the fitness evalua-
tion. In addition, this is the place where the training dataset is used by GP.
This section describes how we can formulate SMC using the fitness evaluation
as the function of interest. Our focus in this paper is the scenario in which mul-
tiple parties are holding different parts of the training dataset. We call this the
multiparty dataholder scenario.

3.1 Multiparty Dataholder Scenario (2PC)

The multiparty dataholder scenario is a natural extension of the original Yao’s
millionaires’ problem, as shown in Figure 2. We simply replace the function
that returns the result of comparison between two numbers with the fitness



Figure 2: The multiparty dataholder scenario when there are two data parties
and one GP party: 1) GP party generates the SMC program, and 2) sends it to
each party. 3) Each party enters their input, and 4) the SMC program computes
and all parties get the results.

function that evaluates the given GP candidate solution using the data held by
the two participating parties. Let us call the data holders the data parties, and
the mediator who is running the GP the GP party.

– GP Party: GP party executes the GP evolutionary loop, and generates
Obliv-C based SMC program that contains the garbled circuits of the can-
didate solution to evaluate.4 This SMC program is used by data parties to
securely commit their inputs.

– Data Party: data parties hold the split training dataset. There are two
ways a training dataset can be split. Suppose a training dataset contains
n datapoints, each with m properties. A horizontal split means each data
party holds mutually exclusive subset of the n datapoints ( the union should
be the entire training dataset). A vertical split means each data party holds
mutually exclusive subset of the m properties of all n datapoints (the union
of two property subsets should be the set of all m properties).

Whenever the GP party needs to evaluate a candidate solution, it first gen-
erates an Obliv-C source code that corresponds to the solution, builds it, and
distributes the executable to data parties. Subsequently, data parties execute
the SMC program and provide their parts of the split training dataset. Once all
data parties enter their input, the fitness function computes and all data parties
get the resulting fitness value. GP party receives the result and continues with
the GP iteration until the predefined termination criterion is met. During the
process, none of the data parties get to know more than their own shares of
training dataset. Note that data parties do get to know what is being computed
(i.e., which candidate solution the GP party is evaluating).

3.2 Singleparty Dataholder Scenario (1PC)

4 In practice, our implementation gathers all candidate solutions in a generation and
combines them all into a single Obliv-C program, to save the compilation overhead.
This is similar to the approach taken by existing GPGPU based parallelisation ap-
proach for GP [14].



Figure 3: The singleparty dataholder scenario when there are one data party
and one GP party: 1) GP party generates the SMC program, and 2) sends it
to the data party. 3) The data party enters its input, whereas GP party enters
nothing, and 4) the SMC program computes and all parties get the results.

As shown in Figure 3, we also present a singleparty dataholder scenario, in which
the entire training dataset is held by a single participating party. We think this
can also be a common use case for SMCGP, in which two stakeholders exist,
one with the data (data party) and the other with Genetic Programming (GP
party). The data party allows the GP party to learn from its data, but does not
want to reveal the data. This scenario can be easily implemented by making the
GP party to double as a data party with no training data subset to contribute.

4 Experimental Setup

This section presents out research questions, and describe experimental subjects
and configurations.

4.1 Research Questions

This paper aims to compare our implementations of both single and multiparty
data holder SMCGP to the Normal-GP through the following research questions.

– RQ1. Effectiveness: how well does the SMCGP perform compared to the
Normal-GP?

– RQ2. Efficiency: what is the runtime overhead of SMCGP when compared
to Normal-GP?

RQ1 is essentially a sanity check for Obliv-C: we should achieve the same
level of effectiveness if Obliv-C performs oblivious and correct computation.
RQ1 is answered by comparing the Mean Squared Errors (MSEs) for the sym-
bolic regression problems, and by comparing wasted effort (wef) for the GP-
based fault localisation dataset: wef means the number of program elements
which should be investigated before finding faulty program elements.

We use two-tailed Mann-Whitney U test to compare values from two different
types of GP. The null hypothesis is that the mean values of different types of
GP are the same. Failing to reject the null hypothesis would show that results
from SMCGP cannot be distinguished from those of Normal-GP.

Our primary interest lies with RQ2, which investigates whether the runtime
overhead of Obliv-C is practical. We expect both the use of garbled circuit



protocol and the communication overhead itself will have a negative impact
on the execution time of SMCGP. Therefore, we answer RQ2 by statistically
comparing the execution time of Normal-GP and SMCGP.

4.2 Subjects

Subject Equation Size of Training Data # of Variables

Keijzer-6 [13]
∑x

i
1
i

50 1

Nguyen-7 [30] ln(x + 1) + ln(x2 + 1) 20 1

Dow Chemical Chemical Process Data 747 57

Vladislavleva-4 [31] 10
5+

∑5
i=1(xi−3)2

1,024 5

FLUCCS [27] Real-world Fault Data 7,280 40

Table 2: Four symbolic regression benchmark problems and one real world fault
localisation data from Defects4J repository studied in this paper.

Table 2 shows the subjects of our experiment. We use four symbolic regression
benchmark problems that have been widely studied in the literature [33], and
one GP-based fault localisation technique and a real world fault dataset based
on Defects4J repository [27].

Symbolic regression is a regresson analysis that aims to find a mathematical
expression that best fits the given dataset [15]. Symbolic regression is usually
performed by evolving trees that represent expressions, using the difference be-
tween the given data (i.e. the training data) and the data produced by candidate
expressions as the fitness. Among the studied symbolic regression benchmark
problems, Keijzer-6 [13], Nguyen-7 [30], and Vladislavleva-4 [31], are synthetic
problems. On the other hand, the Dow Chemical symbolic regression dataset
was the subject of the EvoCompetitions event at the 2010 edition of EvoStar
conference and is based on real world industrial application at Dow Chemical.5

GP has been used for fault localisation to build ranking models: given various
features (including data from both passing and failing test executions) for pro-
gram elements as input, the aim is to learn a ranking model that places the faulty
program element at the top. The expression evolved by GP returns what is called
suspisiousness score for program elements, which are then sorted according to
their scores.6 For the fault localisation problem, we use the publicly available
data from FLUCCS [27], which contains per-method Spectrum Based Fault Lo-
calisation (SBFL) scores [34], as well as various code and change metrics [27],
for the faulty real world Java programs in the Defects4J benchmark [11].

5 http://dces.essex.ac.uk/research/evostar/competitions.html
6 Note that, while FLUCCS [27] makes a link between defect prediction and fault

localisation via shared features, the GP formulations for two problems are different.
Defect prediction classifies each program element to be fault prone or not: fault
localisation assigns suspiciousness scores to program elements, aiming to place the
faulty element at the top when ranked by them.



In our experiment, we select a single target program, Mockito, of which
there exist 36 faulty versions in the FLUCCS dataset: each of the faulty version
contains 1,040 methods on average. Out of 36 faulty versions, we use 32 for
training, and use the remaining four for testing.

Since the 2PC scenario requires two data parties holding split dataset, we
divide the original dataset in half. Datasets for the symbolic regression bench-
mark are split horizontally, whereas GP-based fault localisation dataset is split
vertically (i.e., it results in generating two datasets that have 20 variables re-
spectively). We posit that SMCGP will not be significantly slowed down for the
2PC scenario, as long as the network provides sufficient speed.

4.3 Configurations & Environments

We implement the GP party using DEAP [8], a Python library for evolutionary
algorithm that includes an implementation of tree-GP. For fitness evaluation of
each candidate GP tree, our GP party generates an Obliv-C source file using
a template. To reduce the overhead of invoking Obliv-C compiler, we convert
and compile the entire population in a single Obliv-C source file.

For symbolic regression benchmarks, we use a population size of of 40 indi-
viduals, a single point crossover with a rate of 0.6, and a subtree replacement
mutation with a rate of 0.2. For the FLUCCS dataset, we use a population of
40 individuals, a single point crossover with the rate of 1.0, and a subtree re-
placement mutation with the rate of 0.1. Types of non-terminal GP nodes are
addition, subtraction, multiplication, and safe division (i.e., div(a, b) = a

b if b 6= 0
and 1 if b = 0). While parameter values may affect the quality of outcome, our
main interest is the efficiency of SMCGP and not the solution quality.

We set the maximum tree depth to three and the stopping criterion to be
after ten generations. While these may not be ideal choices for the accuracy,
note that our primary aim in this empirical study is to investigate the impact of
SMC on GP’s efficiency and not to evolve the best possible solution. Note that,
for the FLUCCS data, we do not use all 32 faulty versions simultaneously during
training: rather, we randomly sample seven programs for every GP generation
to lessen the burden of computation and mitigate overfitting.

We repeat each configuration of both types of GP 20 times. The experiments
have been performed on machines equipped with Intel i7-6700 CPU and 32GB
of RAM, running Ubuntu 14.04.5 LTS.

5 Results

Table 3 shows the results of Mann-Whitney U test on the MSE of SMCGP
and Normal-GP, and Table 4 shows the results of Mann-Whitney U test on the
wef value of SMCGP and Normal-GP. Based on these results, we conclude that
there is no statistically significant difference between the results from SMCGP
and Normal-GP, for both the symbolic regression benchmarks and the fault
localisation problem (α = 0.05). While this is as expected and should be, the
sanity check through RQ1 was not wasted, as it enabled us to report a serious
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Figure 4: Boxplots of wef by each test program. The y-axis is shown on loga-
rithmic scale.

defect in Obliv-C, which has been reported and subsequently patched by the
developers of Obliv-C.

There is one exception, which is the p–values obtained from the case of
Mockito-1. The p–values from 1PC and 2PC, 0.01 and 0.04 respectively, suggest
statistically significant difference between SMCGP and Normal-GP. Figure 4
provides the possible reason for this: the 20 repeated runs of Normal-GP for
Mockito-1 resulted in much higher average wef including more outliers. Both
1PC and 2PC SMCGP performed better than Normal-GP, hence the statisti-
cally significant difference. We attribute the poor performance of Normal-GP
for Mockito-1 to two possible reasons: 1) stochastic nature of GP, regardless
of whether the fitness evaluation is secure or not, and 2) the possibility that
learning to localise the fault Mockito-1 is particularly challenging.7

In general, we conclude that the two samples of performance metrics from
the studied problems are from the same distribution. We thereby answer RQ1
as follows: there is no loss of accuracy in SMCGP when compared to Normal-GP.

For RQ2, we measure the execution time for each GP run. The results are
shown in Figure 5. The differences in the execution time between 1PC and
Normal-GP is significant: we observe that SMCGP is, on average, 1,739, 1,590,
and 541 times slower than Normal-GP, for the Keijzer-6, Dow Chemical, and
FLUCCS, respectively. The trend is similar between 2PC and Normal-GP. The
main reason for this overhead is the use of garbled circuits protocol (i.e., generat-
ing and building Obliv-C SMC programs), as well as the TCP communication

7 It is known that faults exhibit modal behaviours against fault localisation ranking
models learnt by FLUCCS [27]: Mockito-1 may be one such a fault that can only be
localised well by a small minority of ranking models.



Scenario Subject U–value p–value

1PC, Normal-GP

Keijzer-6 220.5 0.557
Nguyen-7 204.5 0.910
Dow Chemical 204.5 0.914
Vladislavleva-4 248.5 0.183

2PC, Normal-GP

Keijzer-6 156.5 0.184
Nguyen-7 192.0 0.833
Dow Chemical 179.0 0.579
Vladislavleva-4 239.5 0.272

Table 3: The result of two-tailed Mann-Whitney U test on the MSE of SMCGP
and Normal-GP. The significant level is 0.05 and the number of sample size is
20. The cases for which the p–values are not significant are typeset in bold.

Scenario Test Program U–value p–value

1PC, Normal-GP

Mockito-1 105.5 0.010
Mockito-2 205.5 0.890
Mockito-3 210.0 0.767
Mockito-4 205.0 0.903

2PC, Normal-GP

Mockito-1 124.5 0.040
Mockito-2 194.5 0.890
Mockito-3 182.0 0.612
Mockito-4 161.5 0.302

Table 4: The results of two-tailed Mann-Whitney U test on the wef metric
values from the FLUCCS dataset. The significance level is 0.05 and the number
of sample size is 20.

(i.e., transferring the encrypted data), as the core GP configuration is the same
for SMCGP and Normal-GP. Based on these observations, we answer RQ2 as
follows: the cost of data obliviousness in SMCGP can be up to three orders of
magnitude slower execution time.

6 Threats to Validity

Threats to internal validity concern the extent to which the observed results
from the empirical evaluation warrants our claims, such as implementation cor-
rectness. Both core components of our implementation of SMCGP, DEAP and
Obliv-C, have been scrutinised as open source projects and widely applied to
various work in the literature [9, 10, 14, 27]. The remaining parts of the imple-
mentation written by us have been carefully analysed manually to minimise the
risk of implementation errors.

Threats to external validity concern the extent to which our empirical evalua-
tion results generalise. We chose widely studied symbolic regression benchmarks
as well as a real world SBSE application to promote generalisation.
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Figure 5: Boxplots of execution time by each subject.

Threats to construct validity concern how accurately the measurements we
take are actually correlated to what they claim to measure. We assess the level
of any threats to construct validity to be low, as our evaluation metric, MSE,
is a standard evaluation metric for symbolic regression and based on actually
observed errors.

7 Related Work

Genetic Programming evolves programs, often using trees as representation [22].
Its ability to evolve expressions rendered itself as a tool for predictive modelling
in domains such as software development effort estimation [6] and defect prone-
ness prediction [18]. It has been used to evolve risk evaluation formulas [36] as
well as to learn more complicated ranking models [27] for fault localisation. Many
application domain involve potentially sensitive data, which motivates our use
of Obliv-C for SMCGP.

Peters et al. maintained the data privacy for cross-company defect predic-
tion in which data from one company is used to train defect predictors for an-
other [21]. The underlying technique is called MORPH: it obfuscates datapoints
while ensuring that the obfuscated points do not cross the boundaries between
the original and its neighbouring class. Li et al. later extended MORPH to Sparse
Representation based Double Obfuscation (SRDO) with the same intention to
preserve class labels [16]. Both techniques are designed for classification problems
and need labels: SMCGP can be applied to any problems. Also, both techniques
are much faster than SMCGP, they only obfuscate and not completely hide the
data: SMCGP does not reveal any information.

There are other secure computation frameworks, both software and hardware
based. Homomorphic Encryption (HE) allows computation on the encrypted
data without the need to decrypt the data first [20], but is known to require
inhibitively long execution time and significant memory usage. Hardware assisted



secure computation methods, such as Intel’s Software Guard Extension (SGX) [1,
19], provide an enclaves in which user code can be securely executed. While SGX
is an ideal solution for secure executions of a given specific program [3, 25], it
does not support multiple parties and requires proprietary hardware.

Data privacy has been extensively studied in relation to machine learning [2,
24] but remains a relatively new topic for SBSE. As far as we know, ours is the
first implementation of GP that attempts to completely hide training data while
achieving the same computation.

8 Conclusion

We present SMCGP, a Genetic Programming that allows training data to remain
private to data holders. We implement our version of SMCGP a Secure Multi-
party Computation (SMC) protocol called garbled circuit, through a framework
called Obliv-C. Our empirical evaluation of SMCGP using a set of widely stud-
ied symbolic benchmark and a fault localisation dataset from Defects4J reposi-
tory shows that SMCGP is feasible without any loss of precision. However, the
cost of hiding the data is about three orders of magnitude longer execution time.
Future work will investigate the adversarial scenarios, in which the candidate
solutions of GP also need to remain oblivious, as well as the possibility of appli-
cation of secure multiparty computation model for other types of evolutionary
algorithms.
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