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Mutation analysis can provide valuable insights into both System Under Test (SUT) and its test suite. However,
it is not scalable due to the cost of building and testing a large number of mutants. Predictive Mutation Testing
(PMT) has been proposed to reduce the cost of mutation testing, but it can only provide statistical inference
about whether a mutant will be killed or not by the entire test suite. We propose Seshat, a Predictive Mutation
Analysis (PMA) technique that can accurately predict the entire kill matrix, not just the mutation score of the
given test suite. Seshat exploits the natural language channel in code, and learns the relationship between the
syntactic and semantic concepts of each test case and the mutants it can kill, from a given kill matrix. The
learnt model can later be used to predict the kill matrices for subsequent versions of the program, even after
both the source and test code have changed significantly. Empirical evaluation using the programs in the
Defects4J shows that Seshat can predict kill matrices with the average F-score of 0.83 for versions that are up
to years apart. This is an improvement of F-score by 0.14 and 0.45 point over the state-of-the-art predictive
mutation testing technique, and a simple coverage based heuristic, respectively. Seshat also performs as well
as PMT for the prediction of the mutation score only. When applied to a Mutation Based Fault Localisation
(MBFL) technique, the predicted kill matrix by Seshat is successfully used to locate faults within the top ten
position, showing its usefulness beyond prediction of mutation scores. Once Seshat trains its model using a
concrete mutation analysis, the subsequent predictions made by Seshat are on average 39 times faster than
actual test-based analysis. We also show that Seshat can be successfully applied to automatically generated
test cases with an experiment using EvoSuite.

CCS Concepts: • Software and its engineering→ Software creation and management; • Computing
methodologies→ Machine learning.

Additional Key Words and Phrases: Mutation Analysis, Deep Learning

1 INTRODUCTION
A long standing issue in a mutation analysis is its limited scalability [36]. As the size of the System
Under Test (SUT) grows, the number of generated mutants also increases significantly. Each mutant
then has to be compiled, and executed, to check whether it is killed (i.e., detected as behaving
differently) by any of the existing test cases, resulting in a significant, sometimes infeasible, amount
of cost. Many different approaches have been proposed to improve the scalability of mutation testing,
but they either require more complicated program instrumentation to detect internal state deviation
instead of propagated external behaviour (weak mutation [22, 35]), need more sophisticated code
mutation that combines multiple mutants into a single compilation (meta-mutation [44]), or simply
discard some mutants (mutant sampling [13, 37]). In many of these approaches, the improvement
in scalability is linearly bound to the number of mutants (not) analysed.

Recently, Predictive Mutation Testing (PMT) has been proposed to attack the scalability issue in
mutation testing from a very different angle [32, 51]. Instead of reducing the number of mutants to
analyse, PMT collects test suite level dynamic features that are highly relevant to whether a mutant
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can be killed or not (such as the number of tests that cover the mutated statement, or the number
of times the mutated statement is executed by the test suite), and performs statistical inference
about the probability of the mutant being killed by the given test suite. Given sufficient preceding
mutation testing results, PMT trains a model that can predict whether a mutant will be killed by a
test suite. While PMT can achieve cost saving that is not linearly bound to the number of mutants
considered, its limitation is the fact that it can only make a test suite level prediction, which is
sufficient to predict the mutation score (i.e., the ratio of killed mutants to the generated mutants)
but not the relationship between a mutant and a single test case.
This paper proposes Seshat1, a predictive model for the relationship between mutants and

individual test cases. Compared to PMT, Seshat can predict the entire kill matrix2 that results
from mutation analysis. We refer to this new type of predictive modelling as Predictive Mutation
Analysis (PMA), to emphasise the finer granularity of the prediction, as opposed to PMT, whose
outcome is the test suite level mutation analysis.
Seshat exploits the Natural Language (NL) channel in software [2]. Natural Language channel

refers to the communication channel that explains the conceptual contexts of the actual executions
via natural language elements in source code, such as identifier names. In comparison, the traditional
mutation analysis depends on the Algorithmic (AL) channel, via which the semantics of the program
(and, naturally, its mutant) is actually computed. The existence of NL channel as a human to human
communication medium has been known for a long time [30], but recent advances in the application
of language models to source code have revealed that the NL channel can be a rich source of
information for various automated tasks, such as code completion [19] or fault localisation [40].

Consider a test case whose name contains domain specific terms, such as testAccountBalance.
We posit that this test case has a much higher chance of killing any mutants that are gener-
ated within the scope of a method named getAccountBalance() than another method named
updateEmailAddress(int userID, String emailAddress). Given a kill matrix that has
been obtained from actual mutation analysis, Seshat can learn the relationship through the similar-
ity between the names of each test case and the mutants it can kill. Since the relationship is learnt
in the NL channel, it can later be used to predict the relationship between unseen test cases and
mutants, without any execution.
In addition to names, we extract the syntactic and semantic concepts in source code and test

cases, using Deep Neural Network (DNN) with the word embedding layers and the bidirectional
GRUs [5]. We include the change caused by the mutation, and the type of mutation, as features
of our model. Under the cross-version scenario, we evaluate Seshat using different versions of
subject programs in the Defects4J benchmark and two mutation tools PIT [6] and Major [25].
Although Seshat solely depends on the static features, the results show that Seshat can predict kill
matrices with up to F-score of 0.94 and outperforms PMT and a coverage based baseline model.
Notably, Seshat does more than simply memorising the relationship between test cases and mutant
locations, as it shows an average prediction F-score of 0.78 for newly added test cases. Compared
to generating full kill matrix by executing all individual tests against mutants, the prediction by
Seshat is orders of magnitude faster: encouragingly, the bigger the target program is, the higher
the speed-up becomes. The contributions of this paper are as follows:

• We introduce Seshat, a Predictive Mutation Analysis (PMA) technique that can predict full kill
matrices for unseen mutants and test cases.

1Seshat is an Egyptian deity responsible for writing and record keeping.
2Given𝑚 mutants and 𝑛 test cases, a kill matrix𝑀 is an𝑚-by-𝑛 matrix, where 𝑎𝑖 𝑗 is 1 if the mutant𝑚𝑖 is killed by the test
𝑡 𝑗 , and 0 otherwise.
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• We formulate predictive modelling of mutation analysis as a machine learning problem in the
Natural Language (NL) channel in source code. To our knowledge, this is the first attempt to
analyse mutation results using the NL channel.
• We conduct a large scale evaluation of Seshat using multiple versions of real world Java projects
in the Defects4J benchmark, and two widely-used mutation tools. Seshat achieves F-score
of 0.83 on average, between versions that are years apart. Moreover, Seshat outperforms an
existing Predictive Mutation Testing (PMT) technique with finer granularity of the prediction
and shows comparable results with PMT when it is used to predict the mutation scores.
• Beyond predicting the mutation score, we apply Seshat to Mutation Based Fault Localisation
(MBFL) technique and evaluate its localisation effectiveness on 220 buggy programs inDefects4J.
It successfully locates faults within the top ten position, which is competitive results with original
MBFL technique that uses an intact kill matrix.
• We evaluate whether Seshat can be applied to automatically generated test cases. Our experi-
mentation with EvoSuite suggests that, as long as a meaningful naming convention is upheld
during the generation of the test cases, Seshat can exploit the information in the same way and
predict kill matrices of EvoSuite generated test suites with F-score of up to 0.86.

The rest of the paper is organised as follows. Section 2 describes how Seshat formulates predictive
mutation analysis using the Natural Language channel. Section 3 describes the details about the
experimental setup, and introduces the research questions. Section 4 presents and discusses the
results of empirical evaluation. Section 5 presents discussions about changes of test quality, data
imbalance, and ablation study. Section 6 considers threats to validity, and Section 7 describes the
related work. Finally, Section 8 concludes.

2 SESHAT: PREDICTIVE MUTATION ANALYSIS USING NL CHANNEL
This section describes how we formulate prediction of the relationship between mutants and test
cases via Natural Language (NL) channel. It also presents our model architecture for prediction of
kill matrices.

2.1 Looking at Mutation through Natural Language Channel
The essential steps of mutation analysis are as follows. First, we mutate the target program using
syntactic transformations, i.e., mutation operators. Second, we execute the available test cases
against the mutated program. Finally, we check whether the mutant is killed, i.e., whether the
program behaves differently when mutated and executed by the given test cases. The details of
these steps are captured by the PIE theory [45]: for a test case to kill a mutant, it should first Execute
the mutant; the execution should result in an Infected internal state, which should be Propagated
to the observable output.
All three stages of PIE take place in what Casalnuovo et al. call Algorithm (AL) channel, as

opposed to Natural Language (NL) channel [2]; in the source code, the AL channel represents the
computational semantics and executions, whereas the NL channel represents the identifiers and
comments that assist human comprehension. Most of the existing analyses operate within the AL
channel that dictates whether PIE conditions are satisfied or not, while the NL channel has not
been considered as an important factor.
An interesting recent advance, Predictive Mutation Testing (PMT), aims to build a predictive

model using the features based on the PIE theory [32, 51]. The two dynamic features, which are
known to be the most important features in PMT, are related to the test execution: numTestCovered
(the number of tests in the whole test suite covering the mutated statement) and numExecuteCovered
(the number of times the mutated statement is executed by the whole test suite). The higher these
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1 public void testFactory_daysBetween_RPartial_MonthDay() {

2 MonthDay start1 = new MonthDay(2, 1);

3 MonthDay start2 = new MonthDay(2, 28);

4 MonthDay end1 = new MonthDay(2, 28);

5 MonthDay end2 = new MonthDay(2, 29);

6

7 assertEquals(27, Days.daysBetween(start1, end1).getDays());

8 assertEquals(28, Days.daysBetween(start1, end2).getDays());

9 assertEquals(0, Days.daysBetween(start2, end1).getDays());

10 assertEquals(1, Days.daysBetween(start2, end2).getDays());

11

12 assertEquals(-27, Days.daysBetween(end1, start1).getDays());

13 assertEquals(-28, Days.daysBetween(end2, start1).getDays());

14 assertEquals(0, Days.daysBetween(end1, start2).getDays());

15 assertEquals(-1, Days.daysBetween(end2, start2).getDays());

16 }

Fig. 1. Example test method of joda-time

dynamic feature values are, the more likely it is that the PIE conditions are met. We note that these
dynamic features are essentially statistical aggregation within the AL channel, and also that the
static features in PMT all concern structural properties of the code that exist in the AL channel.
We propose to reconstruct the results of mutation analysis in the NL channel. Intuitively, the

prediction made by PMT using the AL channel is that “if a mutant is executed frequently by
many different test cases, it is more likely to be killed”. Here, the code coverage is used as a
surrogate measure of proximity by computational semantics, as is often the case in regression
testing optimisation [50]. Our parallel intuition is as follows: “if the properties of a mutant are
syntactically/semantically similar, or closely related to, those of a given test case, it is more likely to be
killed by the test case.”

2.2 Predictive Mutation Analysis
A clear benefit of using the NL channel is that we can make predictions about a single mutant
and a single test case. On the contrary, PMT depends on the aggregation of the features over the
entire test cases and the satisfaction of the PIE conditions. We hypothesize that this will hinder
making accurate predictions for a single test case. However, the prediction within the NL channel
can be made by learning one-to-one relationship between the mutants and the test cases. The
one-to-one relationship allows us to predictively build the entire kill matrix, which is required
by many applications of mutation analysis such as fault localisation [21, 27, 33, 38], test data
generation [16, 29, 37], and automated program repair [8, 9, 11, 48]. To distinguish the difference
in prediction granularity, we call the one-to-one predictive modelling of mutation results as a
Predictive Mutation Analysis (PMA).

2.3 Input Features of Seshat
Seshat uses the following features to perform PMA via the NL channel in the source code.

2.3.1 Test and Source Method Name. Test cases are written to target specific parts of the source
code: any mutants generated in the corresponding part are, by default, more likely to be killed by
those test cases. We exploit the fact that developers often put meaningful names to both source
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1 public static double[] nullToEmpty(final double[] array) {

2 if (array == null || array.length == 0) {

3 return EMPTY_DOUBLE_ARRAY;

4 }

5 return array;

6 }

Fig. 2. Example source method of commons-lang

and test code [43]. By exploiting the linguistic links between them, we define two input features
for the name of the test and the source method, respectively.

Figure 1 shows a test method of joda-time. From its method name,
testFactory_daysBetween_RPartial_MonthDay, we can deduce that it is likely to test a
source method named daysBetween. In addition, the name of the class that this test method
belongs to is TestDays, which indicates that the tests in this class are related to the Days class in
the source code. Based on this observation, we build new input features for the test method, and
their target source method, by concatenating their method and class names, respectively. To handle
these features, we use a Deep Neural Network (DNN) model consisting of the word embedding
layers and GRUs [5]. See Section 2.5 for more details of our model architecture.
Note that such a linguistic link may not always exist. For example, consider one of the test

methods in commons-lang named testLang865, which is specifically designed to handle the bug
report whose unique identification number is 865.3 The test actually checks whether
LocaleUtils.toLocale can parse strings starting with an underscore, but there is no clue of
this goal in the name of the test method.

2.3.2 Code Tokens of Mutated Statement. Given a source and a test method, their names as features
remain identical for all the mutants that are generated within the source method. However, they
do not survive, or get killed by, the same test method collectively. We need additional features that
allow us to distinguish individual mutants. To capture the characteristic of each mutant, we take
the code snippet of the line in which the mutant is generated, as well as the actual token(s) before
and after the mutation. Note that this triplet of information is often provided by the mutation tool
themselves.4
For example, consider the source method in Figure 2. Major mutation tool mutates Line 2 by

changing array.length == 0 to array.length >= 0. We use the entire if-statement as well
as before/after code fragments:
• Mutated Statement: if (array == null || array.length == 0)

• Before: array.length == 0

• After: array.length >= 0

Similar to the method name features, code tokens of mutated statements are processed by the
DNN model. In particular, the before and after code tokens are compared to each other using
comparison layers (see Section 2.5 for more details).

2.3.3 Mutation Operator. Lastly, we use mutation operator as a categorical input feature to explic-
itly represent how destructive the operator is. We posit that it may be easier to kill the mutants
generated using Return Values mutator than Binary Arithmetic Operation mutator. We use one-hot

3https://issues.apache.org/jira/projects/LANG/issues/LANG-865
4Since PIT does not provide before and after tokens in the report, we exclude them when training models for PIT.

https://issues.apache.org/jira/projects/LANG/issues/LANG-865
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encoding to represent the type of mutation operator. Note that the dimension of the one-hot encod-
ing depends on the number of mutation operators supported by the mutation tool. PIT provides 11
operators in its default configuration and Major provides nine operators in our setting.

2.4 Preprocessing
All textual inputs go through the following preprocessing.
• Word Filtering: The numeric or string literals may exhibit local features that would be difficult
to generalise. To avoid overfitting to the local features, we filter numeric and string literals by
replacing them with special tokens. Also, we use two more special tokens for unknown word
and for removed words due to the mutation.
• Subword Splitting: Compound words tend to convey several concepts. For instance,
ConvertToAUTF8String can be seen as a compound of ‘Convert’, ‘To’, ‘A’, ‘UTF8’, and ‘String’.
The compound words not only increase the vocabulary size of the corpus, but also present
challenges for effective learning of the word embedding due to their rareness [26]. To address
this issue, we employ the state-of-the-art subword splitter Spiral [23] and segment the compound
words into subwords.
Finally, all preprocessed tokens for all input features are aggregated to build a dataset and

vocabulary. Each element in the dataset represents an one-to-one mapping between a mutant and
a test, labelled 0 if the mutant survives the test, and 1 if killed. The dataset is made up of only tests
that cover the mutant: label 0 means that the mutant is covered but not killed by the test. This
will reduce training and prediction time, as collecting coverage is relatively inexpensive compared
to the actual mutation analysis. In the study, we only consider cross-version scenarios, and not
cross-project scenarios. This means that we will be less affected by the Out-of-Vocabulary (OOV)
problem [18].

2.5 Model Architecture
Figure 3 illustrates amodel architecture of Seshat. It consists of theword embedding layers to convert
words to vector representations, the bidirectional GRU layers to extract sequential context in names
and code tokens, the comparison layers to quantify differences between two vector representations,
and the linear layer and softmax for the final classification. We detail each component in the
following subsections.

2.5.1 Input Layer. The input layer consists of a name-based and a mutation-specific part. We
argue that the name-based input features mostly reflect the NL channel in the code, whereas the
mutation-specific input features reflect more of the AL channel in the code, as the code tokens
contain some parts of program logic. Consequently, we use independent word embedding layer, as
well as the bidirectional GRU, for each part.

2.5.2 Word Embedding and Encoding Layer. The word embedding layer maps each word to a
numerical representation that captures the relative relationship betweenwords.We use Ep ∈ R |𝑉𝑝 |×𝑑
for the name-based features, and Eq ∈ R |𝑉𝑞 |×𝑑 for the mutant-specific features: 𝑉𝑝 and 𝑉𝑞 denote
vocabularies of the names and code tokens respectively, and 𝑑 denotes a dimension of the word
embedding. We train the embedding layer from scratch as part of the model training, instead of
using pre-trained weights.

The words in the test method name {𝑤𝑡,1, . . . ,𝑤𝑡,𝑛} and the source method name {𝑤𝑠,1, . . . ,𝑤𝑠,𝑚}
are passed to the word embedding layer and converted to 𝑥𝑡,𝑖 = Ep (𝑤𝑡,𝑖 ) ∈ R𝑑 , 1 ≤ 𝑖 ≤ 𝑛 and
𝑥𝑠,𝑗 = Ep (𝑤𝑠,𝑗 ) ∈ R𝑑 , 1 ≤ 𝑗 ≤ 𝑚. Subsequently, the bidirectional GRU is used to extract hidden
context between words in two directions. For the test method name:
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Fig. 3. Model architecture of Seshat

−→
ℎ𝑡,𝑖 =

−−−→
GRU(𝑥𝑡,𝑖 ) (1)

←−
ℎ𝑡,𝑖 =

←−−−
GRU(𝑥𝑡,𝑖 ) (2)

ℎ𝑡,𝑖 =
−→
ℎ𝑡,𝑖 ⊕

←−
ℎ𝑡,𝑖 (3)

The hidden representations of a forward GRU and a backward GRU are concatenated, composing
one representations ℎ𝑡,𝑖 . Next, we adopt an attention mechanism to reward those words that are
deemed to be important.

𝑢𝑡,𝑖 = tanh
(
𝑊𝑎𝑡𝑡ℎ𝑡,𝑖 + 𝑏𝑎𝑡𝑡

)
(4)

𝛼𝑡,𝑖 =

exp
(
𝑢⊤𝑡,𝑖𝑢

)
∑

𝑖 exp
(
𝑢⊤
𝑡,𝑖
𝑢

) (5)

𝑣𝑡 =
∑︁
𝑖

𝛼𝑡,𝑖ℎ𝑡,𝑖 (6)

𝑊𝑎𝑡𝑡 denotes a learnable weight matrix and 𝑏𝑎𝑡𝑡 is a corresponding bias. The attention vector is
normalised by softmax (Equation 5) and makes resulting embedding vector 𝑣𝑡 through the weighted
sum with ℎ𝑡,𝑖 (Equation 6). The same bidirectional GRU and attention mechanism are applied to
ℎ𝑠,𝑗 , computing 𝑣𝑠 . As a result, the 𝑣𝑡 and 𝑣𝑠 are embedding vectors of test and source method name,
respectively, after the bidirectional GRU layer.
The mutation-specific part of the input uses an independent embedding layer Eq and a bidirec-

tional GRU layer. Except the mutation operator feature that is categorical data and thus one-hot
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encoded, mutation-specific features are fed into Eq, the bidirectional GRU, and attention mechanism
in the same way as the name-based features. At the end of this process, we get three embedding
vectors: 𝑣𝑙 (mutated line), 𝑣𝑏 (before), and 𝑣𝑎 (after).

2.5.3 Comparison Layer. Seshat is based on the intuition that the semantic similarity between the
names of the source and test method will reflect, and eventually allow us to learn, the mutant-test
relationship. To capture the semantic similarity between names, we use a comparison layer [20, 47]
to measure similarity between two embedding vectors, 𝑣𝑡 and 𝑣𝑠 . The comparison layer includes
various comparison functions: Neural Tensor Network (Bilinear layer), Neural Network (Linear
layer), Cosine and Euclidean similarity, element-wise subtraction and multiplication. For example,
Neural Network is a simple network with one linear layer and Neural Tensor Network is similar
but with bilinear layer, each of which has learnable parameters𝑊𝑁𝑁 , 𝑏𝑁𝑁 ,𝑊𝑁𝑇 , 𝑏𝑁𝑇 :

𝑐𝑁𝑁 = 𝑅𝑒𝐿𝑈 (𝑊𝑁𝑁 (𝑣𝑡 ⊕ 𝑣𝑠 ) + 𝑏𝑁𝑁 ) (7)

𝑐𝑁𝑇 = 𝑅𝑒𝐿𝑈 (𝑣𝑇𝑡 𝑊𝑁𝑇 𝑣𝑠 + 𝑏𝑁𝑇 ) (8)
Other comparison functions do not have learnable parameters, and simply compute distances
between two input vectors: 𝑐𝑐𝑜𝑠 (cosine similarity), 𝑐𝑒𝑢𝑐 (Euclidean distance), 𝑐𝑠𝑢𝑏 (element-wise
subtraction), and 𝑐𝑚𝑢𝑙 (element-wise multiplication). The comparison vectors are concatenated and
form an embedding vector 𝑣𝑡𝑠 :

𝑣𝑡𝑠 = 𝑐𝑁𝑁 ⊕ 𝑐𝑁𝑇 ⊕ 𝑐𝑐𝑜𝑠 ⊕ 𝑐𝑒𝑢𝑐 ⊕ 𝑐𝑠𝑢𝑏 ⊕ 𝑐𝑚𝑢𝑙 (9)

With the mutant-specific inputs, before and after represent the changes of the same part of the
code. Therefore, we apply the comparison functions to the embedding vector of the before (𝑣𝑏 )
and after (𝑣𝑎): 𝑣𝑏𝑎 . Note that some comparison functions such as Neural Tensor Network contain
learnable parameters, we use separate comparison functions for before and after. To group and
reduce the dimensionality of each embedding vector, 𝑣𝑡𝑠 and 𝑣𝑏𝑎 , we use two linear layers and
concatenate them:

𝑣𝑡𝑠𝑏𝑎 =𝑊𝑡𝑠 (𝑣𝑡𝑠 ) ⊕𝑊𝑏𝑎 (𝑣𝑏𝑎) (10)
The embedding vector 𝑣𝑡𝑠𝑏𝑎 is passed to the final linear layer and the softmax function to produce

the probability of the input belonging to each class (i.e., killed or not killed).

𝑝 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 (𝑣𝑡𝑠𝑏𝑎)) (11)
During training, all learnable weights such as the word embeddings, the weight matrices, or the

biases are learnt by minimizing the cross entropy loss.

3 EXPERIMENTAL SETUP
We design an empirical study that evaluates Seshat on seven different Java projects consisting of 37
program versions in Defects4J.

3.1 ResearchQuestion
We ask the following six research questions to evaluate Seshat:

3.1.1 RQ1. Effectiveness. Can Seshat learn and predict a kill matrix using the NL channel in the
source code and tests? How does Seshat perform against PMT and a coverage based heuristic? RQ1
concerns the effectiveness of Seshat under a cross-version scenario with the comparisons to other
models. We answer RQ1 by training Seshat using the actual kill matrices of earlier versions of a
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subject system, and using it to predict the kill matrices of subsequent versions. We also train a test
case level PMT and a coverage based baseline to compare the F-score for each subject.

3.1.2 RQ2. Efficiency. How efficient is Seshat compared to actually performing mutation analysis
to obtain an entire kill matrix? RQ2 concerns how much execution time can be saved by Seshat,
compared to the execution time of the traditional mutation analysis. We report the time required
for preprocessing and predicting the full kill matrix.

3.1.3 RQ3. Generalisation. How well does Seshat generalise to test cases that are newly added to a
subject system? If Seshat truly learns through the NL channel, it should retain its predictive power
for the new and unseen test cases, as well as the unseen mutants. If Seshat simply memorises
the features, on the other hand, its prediction accuracy for newly introduced test cases will be
dramatically lower than that for existing test cases. We answer RQ3 by evaluating Seshat separately,
for the old and new test cases.

3.1.4 RQ4. Mutation Score. How well does Seshat predict whether a mutant is killed or survives by a
given test suite (i.e., mutation score) compared to PMT? RQ4 concerns whether the full kill matrix
predicted by Seshat actually produces an accurate aggregated result over the test suite as well. If it
does, the results would support that Seshat incorporates the coarser grained PMT. We answer RQ4
by computing the mutation score and F-score using predicted kill matrix by Seshat, and comparing
them to the actual mutation score and F-score of PMT.

3.1.5 RQ5. Application Study. Can predicted kill matrix by Seshat be used for mutation based fault
localisation? Beyond the mutation score, RQ5 concerns whether Seshat can be applied for Mutation
Based Fault Localisation (MBFL) techniques that use the kill matrix to locate faults. To this end, we
apply Seshat to SIMFL [27], a state-of-the-art MBFL technique that relies on statistical inference
over the kill matrix (See Section 3.5 for the details of SIMFL). Using the predicted kill matrix by
Seshat, we attempt to localise faults using the predicted kill matrices, without paying the cost of
mutation analysis after the bug has been detected. Since we use the predicted kill matrices instead
of real ones, we expect the localisation results to be less accurate. Thus, we report the changes of
localisation accuracy, and also compare their effectiveness to two widely studied MBFL techniques,
MUSE [33] and Metallaxis [38].

3.1.6 RQ6. Naming Convention and Automated Test Generation. How sensitive is Seshat when applied
to automatically generated test cases and their naming convention? With RQ6, we evaluate Seshat
using a test data automatically generated by EvoSuite [10]. We begin by training Seshat with a kill
matrix of EvoSuite generated test suite, and predicting the kill matrix of another, independently
generated EvoSuite test suite for a subsequent version. In addition, we also cross-evaluate the
performance of Seshat between the developer written test suites and the EvoSuite generated test
suites. The use of the machine generated test cases has multiple implications. First, unlike the
developer written test suites that gradually evolve with the SUT, EvoSuite test suites are generated
for each version in our experimental protocol, getting rid of the continuity in the test suite contents.
Second, the machine generated test cases follow different naming conventions from those used
by developers. We adopt the descriptive naming strategy implemented in EvoSuite [7] and see
how much information can be obtained from the NL channel. Finally, we expect the test adequacy
of the machine generated test suites to be different from those written by developers in terms of
the mutation testing. In the evaluation, we investigate how much the predictive power of Seshat
is affected by these factors when we replace the developer written tests with the automatically
generated tests using EvoSuite.
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3.2 Subject Program
We select 37 subject program versions on seven different projects in Defects4J v2.0.0, which has
been widely used in the software testing research, and provides an infrastructure that makes tests
run, coverage analysis, and mutation analysis to be easily performed and reproduced. Table 1 lists
the latest and the oldest subject program versions for each project. Column 1 shows project name,
and the number of program versions in each project we use in the study. We denote the version
number by the identifier number used in Defects4J, and denote the two adjacent versions, or a
version and immediately preceding version by the two versions whose version numbers are right
next or before to each other.
To facilitate cross-version scenario, we select programs whose version number is a multiple of

five or ten. Note that smaller version number does not always represent more recent codebase;
Gson, Cli, JC, and Csv assign smaller version number to older codebase. Chart is the largest subject
with 96k LoC and Time has 4k tests which is the most and 74 times larger than tests of Csv which
contains only 54 tests. We exclude subjects of Time under the Major mutation tool because their
mutation analyses for entire kill matrix have not been completed within 48 hours.

3.3 Mutation Tool
Since the result of mutation analysis is highly dependent on the mutation tool and its configuration,
we evaluate Seshat using two widely studied Java mutation tools, PIT ver. 1.5.2 [6] and Major ver.
1.3.4 [25]. PIT uses bytecode mutator that is known to be efficient and well integrated with various
development environments. Meanwhile, Major adopts compiler-integrated mutator that transforms
the abstract syntax tree (AST) and provides in-depth mutation report. Table 1 lists the number
of generated mutants, killed mutants, and kill percentage of PIT and Major. It shows that large
LoC leads to the large number of mutants: Major generates up to 81k mutants for Chart whereas it
generates 11k mutants for Csv.

In the study, we filter mutants of PIT that are not captured by our preprocess steps, or killed due
to implicit oracles such as time out or uncaught out of memory exceptions, because PIT does not
report the tests that caused the kill. Therefore, in Section 4.4, we have computed the mutation score
ourselves after excluding all those mutants, not using the score reported by the mutation tool.

3.4 PMT and Coverage based Baseline Model
To compare the performance of Seshat against other models, we choose two models: PMT and a
simple coverage based baseline model. Following the recent study that has investigated the model
choices for PMT, we implement a Random Forest classifier using 12 features that has shown the
best performance [32]. Most of the features of PMT are collected in the same way, but the test suite
level features such as numExecuteCovered are collected in the test case level for PMA. In addition,
as a sanity check, we also include a coverage based model that predicts all mutants covered by any
test will be killed. Coverage information for this heuristic has been collected using Cobertura.

3.5 Mutation Based Fault Localisation
Mutation analysis has been successfully exploited for Fault Localisation (FL), resulting in a family
of Mutation Based Fault Localisation (MBFL) techniques [36]. For instance, using the seeded faults
(i.e., mutants), MUSE [33] computes a suspiciousness score based on the ratio of fail-becomes-pass
tests and pass-becomes-fail tests for each statement. Metallaxis [38] observes the mutants that show
similar test results with the faults using Spectrum based Fault Localisation (SBFL)-like formulas.
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Table 1. Subject Program

Project Identifier Version LoC # Tests Date Major PIT
# Mut. Gen. Killed % # Mut. Gen. Killed %

commons-lang Lang 1 21,788 2,291 2013-07-26 22,793 74.2% 10,546 85.4%
Lang 10 20,433 2,198 2012-09-27 19,767 74.7% 9,477 85.6%
Lang 20 18,967 1,876 2011-07-03 19,073 74.5% 8,994 84.3%
Lang 30 17,660 1,733 2010-03-16 18,144 74.7% 8,234 85.5%
Lang 40 17,435 1,643 2009-10-22 17,972 74.1% 8,138 73.8%
Lang 50 17,760 1,720 2007-10-31 18,151 73.0% 8,744 81.3%
Lang 60 16,920 1,590 2006-10-31 17,819 72.6% 8,506 81.5%

joda-time Time 1 27,801 4,041 2013-12-02 20,257 65.1% 9,706 78.4%
Time 5 27,664 4,013 2013-11-01 20,144 65.1% 9,658 78.6%
Time 10 27,341 3,954 2013-06-16 19,991 65.2% 9,634 78.0%
Time 15 27,215 3,894 2012-04-30 19,756 65.3% 9,604 77.9%
Time 20 27,156 3,868 2011-10-23 19,618 65.1% 9,556 77.9%
Time 25 26,805 3,810 2010-12-05 19,488 65.5% 9,416 77.7%

jfreechart Chart 1 96,382 2,193 2010-02-09 81,006 23.6% 35,690 33.9%
Chart 5 89,347 2,033 2008-11-24 75,024 23.6% 33,157 33.7%
Chart 10 84,482 1,805 2008-06-10 71,052 22.8% 31,183 33.1%
Chart 15 84,134 1,782 2008-03-19 70,647 22.6% 30,977 32.8%
Chart 20 80,508 1,651 2007-10-08 67,479 22.2% 30,471 31.4%
Chart 25 79,823 1,617 2007-08-28 66,766 22.1% 30,213 31.0%

gson Gson 15 7,826 1,029 2017-05-31 5,044 64.2% 2,670 76.1%
Gson 10 7,693 996 2016-05-17 4,775 65.4% 2,576 75.7%
Gson 5 7,630 984 2016-02-02 4,722 64.6% 2,546 75.8%
Gson 1 5,418 720 2010-11-02 2,295 61.8% 1,564 70.3%

commons-cli Cli 30 2,497 354 2010-06-17 1,592 81.3% 710 89.2%
Cli 20 1,989 148 2008-07-28 1,118 77.3% 509 83.5%
Cli 10 2,002 112 2008-05-29 1,151 68.4% 515 77.9%
Cli 1 1,937 94 2007-05-15 1,118 66.3% 499 73.3%

jackson-core JC 25 25,218 573 2019-01-16 30,010 53.8% 13,198 63.5%
JC 20 21,480 384 2016-09-01 25,257 49.8% 11,115 58.5%
JC 15 18,652 346 2016-03-21 21,599 48.1% 9,632 56.1%
JC 10 18,930 330 2015-07-31 22,089 48.6% 9,773 56.6%
JC 5 15,687 240 2014-12-07 18,610 47.3% 8,227 54.6%
JC 1 15,882 206 2013-08-28 16,982 46.5% 7,561 53.0%

commons-csv Csv 15 1,619 290 2017-12-11 1,173 71.4% 599 84.0%
Csv 10 1,276 200 2014-06-09 1,043 71.1% 493 81.9%
Csv 5 1,236 189 2014-03-13 996 72.3% 469 81.9%
Csv 1 806 54 2012-03-27 695 68.1% 280 80.4%

For the application study of RQ5, we apply Seshat to a state-of-the-artMBFL technique, SIMFL [27],
a technique that utilises the entire kill matrices. SIMFL tries to locate faults using a statistical infer-
ence over the mutant-tests results in the kill matrix as follows. First, it computes a full kill matrix of
a given program. Subsequently, SIMFL learns a statistical model that can predict where the mutant
was based on the patterns of the failed test cases. This model can later be used to localise faults, as
real faults can be considered as yet another mutation that causes test cases to fail.
A weakness of SIMFL is that, to use the learnt relationship between mutants and test cases to

localise a new fault, SIMFL should have had access to the fault revealing test case during its learning
phase. However, SIMFL cannot be applied to a new fault if the fault is revealed by a new test case
that was not part of the original kill matrix it learnt from. Seshat can help SIMFL overcome this by
inferring the individual mutant-test relationship for the new test case. With RQ5, we evaluate how
much loss in accuracy occurs when we use the inferred kill matrices.
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3.6 Evaluation Metric and Protocol
For all RQs, we use the standard evaluation metric for binary classification, as PMA is essentially
a prediction of binary classes, i.e., killed or not killed. We compute precision, recall, and F-score,
but only report F-score for the sake of brevity, as they show similar trends. Other metrics and
omitted figures are available from a supplementary web page at https://coinse.github.io/seshat-
results. The source code and the full raw results are publicly available at https://figshare.com/s/
ffbcc010905f3942eaeb.
To simulate cross-version scenarios, we set the base versions used for training the model and

apply them to predict the kill matrices of later versions. For all the two adjacent versions in our
subjects, on average, the number of elapsed days is 445, the number of added lines is 14,469, and
the number of removed lines is 14,826.5

3.7 Configuration and Environment
We use a default set of mutation operators for PIT and default template file (.mml) specified in De-
fects4J forMajor.We runmutation analyses using PITwith two threads and fullMutationMatrix
options. For Major, we use sort_methods and exportKillMap options to enable it to compute
the entire kill matrix in a test case level. For the versions in Chart, we run Major within the
killmap tool to reliably manage stack overflow errors involving JVM crashes.6
In the preprocessing step, we perform lexical analysis using a Java lexer implemented in SLP

library.7 In training model, the dimension of word embedding is set to 50, the number of features in
the hidden state of GRU is set to 100, and dropout rate is set to 0.5. The maximum training epoch is
10.

The mutation analysis using killmap tool was performed on four machines each of which runs
Ubuntu 18.04.4 LTS on Intel i5-10600 CPU @ 3.30GHz and 16GB RAM. All remaining experiments
were performed on machines running Ubuntu 16.04.4 LTS, Intel Xeon E5-2630 v4 CPU, Nvidia
TITAN Xp GPU, and 256GB RAM.

4 RESULTS
This section answers the research questions using the results from the empirical evaluation of
Seshat.

4.1 Effectiveness (RQ1)
Figures 4 and 5 show how the F-score changes when we train a model using a kill matrix of a base
version and predict kill matrices of subsequent versions that are gradually farther away. The 𝑥-axis
shows the relative time interval between versions: the longer the time interval between versions,
the further the distance in 𝑥-axis between them. We also specify the exact number of elapsed days
between the first two versions in the 𝑥-axis for the sake of understanding. The colours in Figures 4
and 5 represent the models we use: the blue circle marker represents Seshat, the green X marker
represents PMT, and the orange triangle marker represents the coverage based baseline. In the
same colour variation, the model trained with the older program is marked as darker colour, and
the connected line between markers represent that the models are trained using the same base
version.

5We use git-diff tool to extract changed lines in .java files.
6We obtained the tool from https://bitbucket.org/rjust/fault-localization-data/src/master/killmap (commit ea1741dbb) and
then modified it to run all given test cases.
7https://github.com/SLP-team/SLP-Core

https://coinse.github.io/seshat-results
https://coinse.github.io/seshat-results
https://figshare.com/s/ffbcc010905f3942eaeb
https://figshare.com/s/ffbcc010905f3942eaeb
https://bitbucket.org/rjust/fault-localization-data/src/master/killmap
https://github.com/SLP-team/SLP-Core
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Fig. 4. Prediction of the full kill matrix on Major

Figure 5 shows that Seshat performs the best for versions of Chart on PIT: the average F-score
from all pairs of versions of Chart is 0.92. For all subjects in PIT, Seshat achieves the average F-score
0.84. Compared to PIT, as shown in Figure 4, Seshat shows slightly worse prediction performance
on Major, with the overall average F-score 0.81.
Also, Seshat outperforms PMT and the coverage based model. PMT and the coverage based

model produce average F-scores of 0.70 and 0.39, respectively, when predicting the kill matrices of
PIT, and 0.68 and 0.19 for the kill matrices of Major. This supports our hypothesis that PMT lacks
fine-grained features needed for test case level prediction. It is not surprising that the coverage
based heuristic performs the worst, since the coverage is not a sufficient condition for killing a
mutant.
By comparing lines with different tints in the same colour variation, we can observe how the

time between two versions affects the prediction accuracy of Seshat. The older the model used
for training is, the worse the prediction becomes. When predicting for the latest version, models
trained on the immediately preceding studied version shows 0.08 and 0.09 point higher F-scores
when compared to models trained on the oldest versions, for Major and PIT respectively. However,
we also note that the accuracy degradation is relatively slow: the F-scores decrease by 0.019 and
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Fig. 5. Prediction of the full kill matrix on PIT

0.013 point per year on average for Major and PIT, respectively. PMT also follows this trend but
the coverage based model does not.

The worst F-scores are observed in the models that are trained with the oldest versions of Gson
and Csv. With both projects, the first interval is much longer than those in others: over five years for
Gson, and almost two years for Csv. Combined with the relatively smaller size of these two projects,
we suspect that the codebases for these two projects have changed more than other projects, which
makes the prediction harder. For example, the oldest version of Gson only produces about half the



Predictive Mutation Analysis via Natural Language Channel in Source Code 111:15

mutants then those produced from the next analysed version, resulting in F-scores consistently
lower than 0.7 for all predictions based on itself.

Answer to RQ1: Seshat successfully learns the features in the NL channel that are effective in
predicting the full kill matrices: Seshat achieves average F-score of 0.81 and 0.84 for Major and PIT,
respectively, which significantly outperforms PMT and the coverage based model.

Table 2. Efficiency of Seshat

Project Ver. Major Seshat Speed-up PIT Seshat Speed-up

Lang 1 12,924s 267s 48.34X 1,472s 128s 11.46X
10 13,185s 244s 54.10X 1,385s 116s 11.95X
20 5,395s 214s 25.15X 970s 104s 9.30X
30 5,220s 212s 24.61X 900s 97s 9.24X
40 4,756s 206s 23.08X 836s 93s 9.02X
50 6,793s 196s 34.72X 865s 93s 9.29X

Time 1 - - - 2,294s 616s 3.73X
5 - - - 2,170s 592s 3.67X
10 - - - 1,957s 614s 3.19X
15 - - - 2,138s 564s 3.79X
20 - - - 2,309s 557s 4.15X

Chart 1 64,719s 1,248s 51.87X 2,295s 369s 6.22X
5 53,986s 1,093s 49.40X 2,014s 338s 5.95X
10 46,983s 998s 47.07X 1,542s 293s 5.26X
15 46,429s 962s 48.27X 1,520s 289s 5.26X
20 42,475s 873s 48.68X 1,466s 258s 5.68X

Gson 15 16,738s 347s 48.27X 376s 118s 3.19X
10 15,986s 339s 47.13X 351s 120s 2.94X
5 15,253s 348s 43.82X 345s 113s 3.04X

Cli 30 1,290s 35s 36.98X 74s 19s 3.81X
20 498s 37s 13.35X 43s 20s 2.12X
10 408s 32s 12.94X 42s 18s 2.30X

JC 25 113,343s 538s 210.53X 1,391s 204s 6.81X
20 88,075s 392s 224.44X 1,013s 142s 7.16X
15 45,069s 317s 142.17X 669s 115s 5.82X
10 44,110s 305s 144.85X 676s 113s 5.99X
5 31,257s 209s 149.49X 557s 83s 6.72X

Csv 15 5,289s 52s 101.00X 1,781s 23s 77.91X
10 1,317s 33s 40.30X 1,359s 16s 83.12X
5 1,179s 31s 37.44X 1,493s 16s 93.90X

4.2 Efficiency (RQ2)
The main drawback of building a full kill matrix comes from its huge computational cost. It requires
even more time than traditional mutation testing, because even if a mutant is killed by some test
earlier, it does not skip running other tests. For example, considering Lang 10, traditional mutation
testing using PIT was 4.3x faster than those with full kill matrix option. Therefore, we investigate
how much execution time can be saved by Seshat, compared to that of traditional mutation analysis
with full kill matrix option.
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Table 2 shows the execution time of two mutation tools and Seshat to compute the full kill matrix.
Columns 3 and 4 list the execution time of Major and Seshat that predicts Major’s kill matrix of the
corresponding version, respectively. Similarly, Columns 6 and 7 list the execution time of PIT and
Seshat. Overall, the results show that PIT can compute the full kill matrix in a reasonable time: it
takes up to 38 minutes for Time and up to 74 seconds for Cli. Moreover, PIT is on average 28x faster
than Major since Major has generated more mutants than PIT in our study. Still, Seshat can speed
up from 2x to 94x, compared to PIT. In particular, Seshat predicts kill matrices of Csv exceptionally
faster than others; although all Csv versions have fewer than 300 tests, they are executed relatively
slow, resulting in PIT running more than 22 minutes. In contrast, Seshat is not affected by the test
executions, but only the number of tests, so it can predict kill matrices in less than 23 seconds.
Seshat also requires significantly less time than Major for all subjects, with the average speed-up of
68x. Major runs more than 31 hours for JC 25, but Seshat takes only nine minutes.
Note that the reported speed-ups are specifically in the context of predicting the entire kill

matrices. It is theoretically possible that Seshat can be even more efficient if we only wanted to
predict the mutation scores like PMT: we simply need to stop the prediction for a mutant once it
is predicted to be killed by any test case. However, as Seshat maps one-to-one relation between
multiple mutants and test cases, the inference phase is fully parallelised using a GPU across the
elements in the kill matrices, making mutation score level evaluation of efficiency difficult. Even if
we serialise the computation, the ordering of prediction would affect when the ideal early stopping
point should be. Consequently, we limit our evaluation of efficiency to the prediction of entire kill
matrices.

Answer to RQ2: Seshat is much more efficient in predicting the full kill matrix than traditional
mutation analysis, with the average speed-up of 68x against Major and 14x against PIT.

4.3 Generalisation (RQ3)
In RQ3, we investigate whether Seshat can generalise to the unseen test cases that did not exist in
the test suite of the version used for training. Before prediction, we separate the test cases into
two categories, existing and new. Subsequently, we report the prediction F-score for each group
independently. While we only categorise test cases, we posit that the new test cases are likely to
cover newly introduced code in the version that we apply Seshat to.

Figure 6 shows how F-score changes between the old and the new test categories per projects. The
𝑥-axis represents the version used for training, and the 𝑦-axis represents the averaged difference
in the F-scores when both categories are compared to the F-score computed using all tests: the
F-score Δ of 0 means that the category produces the same F-score as that of the entire test suite.

For all subjects, the existing tests show F-scores that are higher by 0.01 and 0.01 on average, while
new tests show F-scores that are lower by 0.04 and 0.05 on average, Major and PIT respectively.
The difference suggests that Seshat does perform better for the existing test cases. The notable
outliers are from the versions in Lang, for both Major and PIT: the average F-score Δ is −0.11.
We suspect that this is related to the test case granularity: test cases in Lang tend to cover fewer
methods compared to other projects. In our analysis, a test case in Lang covers about 14 methods
on average, whereas a test case in all the other projects covers about 127 methods on average. The
finer granularity may drive Seshat to learn stronger one-to-one mappings between the test cases
and the source methods, with higher risk of overfitting. In turn, this will make it more difficult for
Seshat to make an accurate prediction for the new test cases. Another outlier is the versions in Time
analysed with PIT; however, the reason may be the opposite because Time has the highest average
number of methods covered by a test case, which is 360. It is more difficult to learn mappings
between the source and the test methods if the relationship is dominantly one-to-many, resulting
in low performance of Seshat.
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Fig. 6. Changes of F-score of existing tests and new tests

Answer to RQ3: Seshat can generalise to the new source and test code: the F-score decreases
only by 0.04 and 0.05 with Major and PIT, respectively, for new and unseen test cases.

4.4 Mutation Score (RQ4)
The test case level of PMA is finer-grained than the test suite level of PMT: once we predict a kill
matrix, we can easily compute the Mutation Score (MS) from the matrix. We expect a conversion in
the opposite direction to be more challenging. This is because, intuitively, PMA is more challenging
as a learning problem than PMT, since it needs to learn and produce more information (an entire
kill matrix) compared to PMT (which essentially predicts an aggregation of a kill matrix).
Table 3 shows the F-score and MS error (i.e., |𝑀𝑆𝑅𝑒𝑎𝑙 −𝑀𝑆𝑃𝑟𝑒𝑑 |) when Seshat and PMT predict

whether a mutant is killed by the entire test suite. In general, it is hard to determine which model
performs better because the differences of both F-score and MS error vary considerably between
the subjects. However, despite the aggregation over the predicted kill matrix to compute MS, Seshat
shows comparable and sometimes better results than PMT.

In addition to the analysis of the absolute error, we further investigate the actual difference (i.e.,
𝑀𝑆𝑅𝑒𝑎𝑙 −𝑀𝑆𝑃𝑟𝑒𝑑 ) for all predictions by Seshat and PMT. In total, out of 55 predictions, 11𝑀𝑆𝑃𝑟𝑒𝑑
by Seshat are higher than𝑀𝑆𝑅𝑒𝑎𝑙 . In contrast, all 55𝑀𝑆𝑃𝑟𝑒𝑑 by PMT are higher than𝑀𝑆𝑅𝑒𝑎𝑙 . This
indicates that PMT tends to overestimate mutation scores, while the errors of Seshat are both
over and underestimations. For Seshat, the observed trend is plausible, because some of the kill
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Table 3. Mutation Score Prediction by Seshat and PMT

Project
Major PIT

F-Score MS Error F-Score MS Error
Seshat PMT Seshat PMT Seshat PMT Seshat PMT

Lang 0.825 0.715 0.848 17.547 0.908 0.912 2.112 4.503
Time - - - - 0.894 0.903 0.254 6.091
Chart 0.818 0.747 3.047 4.641 0.896 0.827 1.785 6.306
Gson 0.625 0.644 10.837 9.590 0.817 0.795 4.281 6.445
Cli 0.669 0.781 23.943 7.922 0.847 0.905 10.813 3.583
JC 0.775 0.693 4.370 9.755 0.851 0.832 0.595 5.862
Csv 0.672 0.668 17.286 15.007 0.844 0.856 1.166 7.149

relations may be very unique, and therefore harder to learn properly. In comparison, considering
the importance of dynamic features for PMT, the overestimation by PMT is in line with the widely
known limitations of structural coverage: it relies significantly on features related to the execution
of the mutant, but the coverage does not necessarily result in killing it.
A hybrid model that combines the features of Seshat and PMT may improve the prediction

performance for the MS, as well as the contents of the kill matrix. However, the focus of this paper
was to evaluate the feasibility of Seshat based on the NL channel. We leave further investigation of
hydridisation as future work.
Answer to RQ4: Seshat can predict the mutation results with average F-score of 0.80, and

average mutation score error of 6.26, producing comparable results with PMT that achieves 0.79
and 8.03 respectively.

4.5 Application Study (RQ5)
In addition to evaluating the precision of Seshat, we design an application study showing its
usefulness when it is applied to other domains; we employ Fault Localisation (FL) problem that
aims to find a location of the faults. Our target tool is SIMFL, Mutation Based Fault Localisation
(MBFL) technique that leverages the kill matrix to locate faults [27]. By replacing the kill matrix
used in SIMFL with the predicted one by Seshat, we investigate how much the localisation accuracy
of SIMFL changes. Also, we present a comparison to the two other MBFL techniques, MUSE and
Metallaxis, using 220 buggy programs in Defects4J, as shown in Table 4. ‘SIMFL’ refers to the
SIMFL with its own assumption utilising the original kill matrix, and ‘SIMFL with Seshat’ refers to
SIMFL that uses the predicted kill matrix. In this study, we only used PIT mutation tool as we failed
to get the original kill matrix of Math (commons-math) and Time using Major.8 Seshat models are
trained on the oldest version of the project, e.g., the model used to infer the kill matrices of Chart 1
to Chart 25 is trained on Chart 26. As FL techniques usually produce the ranks of the suspicious
program elements, the evaluation metric we use is 𝑎𝑐𝑐@𝑛, the number of buggy programs where
the MBFL technique successfully located its faults within the top n position.
Table 4 reports that SIMFL outperforms others: it locates 111 faults at the top, followed by

SIMFL with Seshat, Metallaxis, and MUSE. Note that SIMFL with Seshat still outperforms MUSE
and Metallaxis for all 𝑎𝑐𝑐@𝑛 metrics despite using predicted kill matrices. Moreover, compared to
SIMFL, the degradation of localisation effectiveness is relatively small for 𝑎𝑐𝑐@3 and 𝑎𝑐𝑐@10 and

8We have include commons-math of Defects4J for better comparison of the FL results to other techniques; running Major
on Time causes timeout after 48 hours.
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Table 4. A method-level fault localisation of four MBFL techniques

Technique Project # Faults 𝑎𝑐𝑐@1 𝑎𝑐𝑐@3 𝑎𝑐𝑐@5 𝑎𝑐𝑐@10

MUSE [33]

Lang 64 23 36 42 47
Math 105 20 42 51 64
Time 26 3 5 6 9
Chart 25 11 12 14 18

Total 220 57 95 113 138

Metallaxis [38]

Lang 64 30 44 48 57
Math 105 22 49 60 74
Time 26 10 12 15 20
Chart 25 4 10 12 13

Total 220 66 115 135 164

SIMFL [27]

Lang 64 47 54 55 55
Math 105 44 60 69 81
Time 26 11 16 18 23
Chart 25 9 13 15 19

Total 220 111 143 157 178

SIMFL with Seshat

Lang 64 36 48 52 56
Math 105 37 63 75 84
Time 26 8 11 12 13
Chart 25 7 14 19 22

Total 220 88 136 158 175

it performs better with 𝑎𝑐𝑐@5. It indicates that the predicted kill matrices are sufficiently accurate
for the task of FL, especially with respect to 𝑎𝑐𝑐@10 metric, although higher accuracy is needed to
achieve competitive 𝑎𝑐𝑐@5 and above.

Answer to RQ5: the predicted kill matrix by Seshat is successfully applied to theMBFL technique,
SIMFL. SIMFL with Seshat outperforms other two MBFL techniques and does not show disruptive
degradation compared to the original SIMFL assumption.

4.6 Naming Convention and Automated Test Generation (RQ6)
We evaluate Seshat with EvoSuite [10] generated test cases in RQ6: the aim is to investigate whether
the NL channel still holds useful information when test cases are automatically generated. Instead
of relying on naming conventions of human developers, we use the descriptive naming strategy of
EvoSuite [7]. We hereafter denote developer-written test suites with Dev, and EvoSuite generated
test suites with Evo. We first collect kill matrices of all Evo test suites. Subsequently, we train
Seshat model on Evo (i.e., Evo𝑡𝑟𝑎𝑖𝑛) and test on Dev (i.e., Dev𝑡𝑒𝑠𝑡 ), or train Seshat model on Dev (i.e.,
Dev𝑡𝑟𝑎𝑖𝑛) and infer kill matrix for Evo (i.e., Evo𝑡𝑒𝑠𝑡 ). In addition, we provide the results of Evo𝑡𝑟𝑎𝑖𝑛
& Evo𝑡𝑒𝑠𝑡 and Dev𝑡𝑟𝑎𝑖𝑛 & Dev𝑡𝑒𝑠𝑡 . Note that we only conduct the experiment using PIT because
running Major on EvoSuite tests times out after 48 hours.
Table 5 presents the F-scores for each train-test pair. Overall, Dev𝑡𝑟𝑎𝑖𝑛 & Dev𝑡𝑒𝑠𝑡 pair achieves

the highest F-scores, followed by Evo𝑡𝑟𝑎𝑖𝑛 & Evo𝑡𝑒𝑠𝑡 pair. We posit that two factors contribute to the
performance of Seshat with Dev test suites. First, human written tests may provide richer semantic
information in the NL channel. Second, Dev is a regression test suite, whereas Evo test suites are
obtained by independent and separate runs of EvoSuite for each version. Since Dev test suites are
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Table 5. Predicting kill matrix by replacing developer-written tests (Dev) with EvoSuite tests (Evo)

Project Target Dev𝑡𝑟𝑎𝑖𝑛 Evo𝑡𝑟𝑎𝑖𝑛 Evo𝑡𝑟𝑎𝑖𝑛 Dev𝑡𝑟𝑎𝑖𝑛
Vesrion Evo𝑡𝑒𝑠𝑡 Dev𝑡𝑒𝑠𝑡 Evo𝑡𝑒𝑠𝑡 Dev𝑡𝑒𝑠𝑡

Lang 60 0.61 0.68 0.74 0.86
50 0.61 0.67 0.72 0.84
40 0.58 0.64 0.76 0.87
30 0.62 0.62 0.71 0.87
20 0.64 0.65 0.77 0.86
10 0.65 0.67 0.76 0.88

Time 25 0.65 0.66 0.77 0.84
20 0.66 0.64 0.76 0.85
15 0.66 0.65 0.74 0.84
10 0.65 0.64 0.73 0.83
5 0.66 0.66 0.76 0.85

Gson 1 0.56 0.60 0.67 0.66
5 0.72 0.64 0.82 0.90
10 0.71 0.66 0.81 0.91

Cli 1 0.57 0.59 0.52 0.79
10 0.56 0.60 0.87 0.83
20 0.57 0.60 0.86 0.84

Csv 1 0.57 0.58 0.66 0.68
5 0.68 0.71 0.76 0.84
10 0.57 0.68 0.70 0.77

more stable (i.e., many test cases overlap between versions), the prediction of kill matrices may
be easier for Dev test suites. However, the descriptive naming strategy of EvoSuite does provide
some information in the NL channel, allowing Seshat to achieve F-score of up to 0.86 under the
configuration of Evo𝑡𝑟𝑎𝑖𝑛 & Evo𝑡𝑒𝑠𝑡 .

In contrast, replacing Dev with Evo results in deterioration of the effectiveness of Seshat. Dev𝑡𝑟𝑎𝑖𝑛
& Evo𝑡𝑒𝑠𝑡 and Evo𝑡𝑟𝑎𝑖𝑛 & Dev𝑡𝑒𝑠𝑡 show similar results, achieving average F-scores 0.62 and 0.64
respectively. The differences in naming convention between training and testing make the kill
matrix prediction more difficult.

Answer to RQ6: As long as a meaningful naming convention is applied during test generation,
Seshat can also predict kill matrices for automatically generated test cases.

5 DISCUSSION
This section raises a few issues that we have identified while performing the empirical evaluation.
We believe that these can lead into interesting future work.

5.1 TestQuality and Coding Convention
Suppose we take any test suite for which Seshat can successfully perform PMA, and remove
all assertions from its test cases. This will render any prediction useless. What Seshat does is
to reconstruct the relationship between test cases and mutants in the NL channel, based on the
training data. Consequently, it is vulnerable to such manipulation. In contrast, if a test case without
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any assertion always kills a mutant using an implicit oracle (such as crashes), Seshat will duly
learn this relationship. In practice, we expect Seshat to be used to reduce and amortise the cost of
mutation analysis, and not to completely replace it. If there is a continuity in the coding and naming
convention in both source and test code, Seshat is likely to maintain its prediction accuracy. If there
is a meaningful change in test quality, either improvement or decrease, the prediction accuracy will
degrade. We expect this deviation to be picked up by the regular application of concrete mutation
testing.

5.2 Data Imbalance in PMA
The balance between the number of mutant-test pairs that result in kills and non-kills cannot be
known in advance, and likely not to be perfectly 1:1. As Seshat is essentially solving a classification
problem, here we consider the implications of data imbalance.

The text-based nature of Seshat prevents the use of resampling approaches such as SMOTE [3]
or ADASYN [17]. Therefore, we investigate the impact of class imbalance on Seshat using random
over- and undersampling (allowing duplicates). We over- and undersample the training data to
make the class ratio 1:1. Subsequently, we train new models and evaluate them on the same subjects.
Compared to the results of RQ1, with Major, the average F-score increases by 0.026 and 0.025 when
we use over- and undersampling, respectively. With PIT, however, F-score decreases by 0.001 with
oversampling, and increases by 0.010 with undersampling.

The different responses to over- and undersampling between Major and PIT can be attributed to
the status of their initial imbalance. The initial class ratio between killed and not killed mutants
generated by Major across all studied versions is 0.396 on average. With PIT, the initial imbalance
ratio is much minor at 0.985 on average: there are actually more killed mutants than not killed
ones in some projects. We suspect that this leads to over- and undersampling having more random
effects on the results.

We note that the difference in F-score between initial and resampled results are not significant.
Data imbalance will have more significant consequences if it only appears in the training data.
However, due to the continuity in development, projects with imbalanced kill matrices are likely
to exhibit the same imbalance in the future, resulting in relatively minor consequences in our
cross-version evaluation.

Overall, we conclude that addressing the class imbalance issue can improve the performance of
Seshat in general, but the implications of the imbalance can be subtly different depending on the
choice of the mutation tool, its configuration, and the contents of the kill matrix itself.

Table 6. Results of Ablation Study on Major

Project Decrease in F-score
Method Name Mutated Line Before&After Mutation Op.

Lang 0.009 -0.003 0.041 -0.011
Chart -0.056 -0.057 -0.030 -0.072
Gson -0.010 0.028 0.025 -0.014
Cli 0.018 -0.003 0.078 0.014
JC -0.006 0.016 0.018 -0.015
Csv 0.050 -0.015 0.142 0.045

5.3 Ablation Study
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To investigate which feature in Seshat contributes most to the prediction, we conduct an ablation
study by removing each feature one by one and training the model. We then repeat the RQ1 study
with Major to compare the F-scores from the ablated models to those from the original model.
Table 6 reports the decrease of F-score for each removed feature. The column “Method Name”
refers to the model that omits “Source Method Name”, and the column “Before & After” refers to
the model that omits both “Before” and “After” in the model architecture, shown in Figure 3. The
columns “Mutated Line” and “Mutation Operator” refer to the models with corresponding input
components removed, respectively.

Interestingly, the results show that the model performance varies across the subjects but do not
always deteriorate: for the versions of Chart, the ablated models perform better than the original
model. However, the average difference of the F-score is 0.008, which may be too small to precisely
assess the relative feature importance when considering the stochastic nature of training DNN
models using hyperparameters. We presume that our features share some common information
and complement each other, allowing the ablated model to retain its predictive power. We leave
the design of more destructive study to measure the relative feature importance as future work.

5.4 Relation to Regression Mutation Testing
We introduce and discuss the differences between Seshat and RegressionMutation Testing (ReMT) [53],
as ReMT has a similar goal as Seshat, namely to reduce the cost of mutation analysis in the context
of evolving programs. When considering successive commits of evolving systems, ReMT reuses
mutation testing results from the previous version and selects only the subset of tests that are
affected by the latest change to rerun and update the kill matrix. If the underlying Regression
Test Selection (RTS) technique is sound and complete, ReMT can output the correctly updated kill
matrix with the minimum effort required.
ReMT is the most efficient when successively applied to each and every version: if intervals

become longer, changes will accumulate, making ReMT increasingly inefficient (i.e., it will have to
execute more and more tests and mutants). This phenomenon is known to exist in the context of
regression test case selection [28]. ReMT also involves other cost and assumptions. For example, to
precisely select mutants whose kill outcome may change in the new version, some techniques adopt
static analysis techniques that may incur additional cost; to determine the mutant kill accurately,
we also need to assume that the current version is correct.

Seshat can be complementary to ReMT, as the results show that it can provide reasonable
predictions of kill matrices across much longer intervals, incurring very little cost, without assuming
anything about the correctness of the current version. As an extreme example, suppose we want
to update the kill matrix of Lang 60 to get the kill matrix of Lang 1, two versions with 1,590 and
2,291 tests respectively (see Table 1). Even if we do not consider any modified tests between two
versions, at least 701 newly introduced tests (44%) will have to be run. We do not think that this is
a reasonable scenario for ReMT. Table 7 shows the magnitudes of accumulated changes between
versions, listing the number of commits, added, modified, and removed lines between two adjacent
versions. The number of commits between adjacent versions, on average, is 216, which is a wider
interval than ReMT’s setting that only considers the consecutive commits.

6 THREATS TO VALIDITY
The major threats to internal validity lie in the implementation of Seshat as well as the correctness
of actual mutation analysis that provides training data to Seshat. The models are implemented
using widely used frameworks that withstood public scrutiny, such as Scipy and PyTorch. For
training data, we depend on the publicly available mutation analysis script provided by Defects4J.
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Table 7. The changes between versions reported by cloc, only considering changed Java files.

Project Versions # Commits Added Modified Removed

Lang 1↔ 10 189 3,932 6,436 244
10↔ 20 413 7,829 2,836 1,456
20↔ 30 552 4,965 1,120 1,834
30↔ 40 286 45,689 2 44,357
40↔ 50 444 7,819 1,250 10,540
50↔ 60 166 2,333 435 464

Gson 15↔ 10 89 637 222 74
10↔ 5 79 377 21 137
5↔ 1 823 14,474 950 8,220

Time 1↔ 5 16 583 873 21
5↔ 10 62 1,306 229 548
10↔ 15 68 623 81 11
15↔ 20 31 396 71 11
20↔ 25 65 855 136 99,260

Chart 1↔ 5 186 13,081 3,205 3,350
5↔ 10 349 9,598 9,122 1,181
10↔ 15 50 1,046 917 196
15↔ 20 163 7,087 1,218 3,842
20↔ 25 31 1,527 652 110

Cli 30↔ 20 252 5,678 0 4,566
20↔ 10 51 941 597 1,222
10↔ 1 61 520 72 141

Csv 15↔ 10 410 2,453 1,209 383
10↔ 5 53 435 219 221
5↔ 1 489 2,350 497 675

JC 25↔ 20 304 10,684 459 725
20↔ 15 150 7,522 755 3,387
15↔ 10 142 1,092 194 1,037
10↔ 5 260 6,387 360 1,130
5↔ 1 263 3,383 2,127 2,096

The threats to external validity concern the choice of subjects, programming language, and
the mutation tools. Due to the nature of our technique, the results are dependent on the coding
conventions adopted by the studied projects. We tried to use the most recent version of Defects4J
with more diverse projects to avoid overfitting to a specific coding style. Since writing informative
names is regarded as best practice, we expect the NL channel in source code written in other
programming languages will provide similarly rich information. We adopt two mutation tools,
Major and PIT, to reduce the threats related to the choice of a mutation tool.

The threats to construct validity include evaluation metrics we used to draw the conclusions. All
evaluation metrics are standard measures for classification tasks: precision, recall, and F-score.
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7 RELATEDWORK
Existing approaches for mutation testing cost reduction include mutant selection, mutant execution
acceleration, and mutant score prediction [39]. Offutt et al. [34] suggested to use a small set of
sufficient mutation operators instead of using a vast number of mutation operators. Namin et
al. [42] advanced mutation operator selection by leveraging a multi-objective linear regression
which can learn an optimal mutation operator set according to given corpus of mutation testing
results. To reduce the runtime of mutant executions, Zhang et al. [52] applied the idea of test case
prioritization to improving the rate of mutant kills. AccMon [46] prevented redundant mutant
executions by monitoring internal states and cutting off a mutant execution if it fails to induce
different infection states. Regression Testing Selection (RTS) [4] presented a practical Regression
Mutation Testing [53], by selecting relevant tests that should be rerun to determine whether the
new mutants are killed. Despite having a similar regression assumption with ours, we note that the
RTS approach is specifically aimed at reducing the mutation execution cost, while Seshat takes
one step further to provide a predictive model. Consequently, the RTS approach can be combined
with Seshat when Seshat needs to periodically update its reference kill matrix by (re)running test
cases. Recently introduced Predictive Mutation Testing (PMT) [51] opened up a new dimension in
mutation testing by seeking to predict whether a mutant will be killed or not by the entire test
suite based on the structural information on the target program and the coverage information on
the given test suite: consequently, it does not require any mutant execution. Seshat, whoever, aims
for a finer granularity in its prediction by attempting to infer the entire kill matrices, instead of
only predicting whether a mutant is killed by the test suite or not.

The finer-grained, kill matrix level prediction may be utilised in any application that depends on
the one-to-one relationship between mutants and individual test cases. Test generation techniques
that use the mutants as a guidance are one of such applications. For example, to create test cases
that can kill Subsuming Higher Order Mutants (SHOM) [16], one needs to start from the entire kill
matrices of First Order Mutants, which Seshat can approximate. DEMiner [29] proposed to improve
a concolic testing based on the information of which mutation affects which test execution: if there
exists an NL channel in test cases, Seshat can be used to approximately capture the relationship at
a lower cost. Some existing Automated Program Repair (APR) techniques have taken advantage the
mutation analysis. Weimer et al. [48] highlighted Generate-and-Validate program repair as a dual
of the mutation testing, while PraPR [11] explicitly exploited mutation tools for APR. The high
cost of patch validation in APR suggests that, in both cases, Seshat may partially replace concrete
mutation analysis to find an attractive trade-off between analysis cost and accuracy.
A downstream task that can directly benefit from PMA in particular is Mutation Based Fault

Localisation (MBFL) [49]. MBFL techniques have exploited a mutation analysis that relates source
code and tests through mutants [21, 27, 33, 38]. By introducing the syntactic modifications (i.e.,
mutants) to the buggy program, MBFL techniques observe the changes of test results then assign
a suspiciousness score to each statement to identify the possible location of the given faults.
For instance, MUSE [33] and MUSEUM [21] are based on the two conjectures: mutating correct
statements is likely to make passed tests fail, and mutating faulty statements is likely to make failed
tests pass. Then they compute the suspiciousness scores using the ratio of fail-to-pass tests and
pass-to-fail tests. Using Spectrum based Fault Localisation (SBFL)-like formulas, Metallaxis [38]
mutates the buggy program and see whether the test results show a similar pattern with the patterns
of the faults. SIMFL utilises a statistical inference on the kill matrix to find the mutant that makes
tests fail in a similar pattern with the faults, then it suspects that the faults would be close to the
location of the mutant [27]. In all cases, the cost of mutation analysis is directly added to the cost
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of debugging, as these techniques tend to perform mutation analysis once a bug is detected. Seshat
can be easily applied to them to reduce the cost of the mutation analysis.

Even though the mutation testing has been considered a robust measurement of test effectiveness,
code coverage has been widely used as an alternative proxy due to its efficiency. It measures how
well the specific code structures are exercised by the tests, e.g., a statement coverage checks whether
the line is executed by at least one test case. Several studies have shown that there is a correlation
between code coverage and test effectiveness [12, 14], which supports the use of the coverage
as one of our baselines. However, as it does not convey the intent of the given test suite, further
studies have found that the test size and the assertion should be taken into account to quantify test
effectiveness [24, 54]. Checked coverage [41] is one such example that attempted to incorporate the
information of the assertions in the coverage using backwards slicing on the assertions in the test.
However, its dependence on the static analysis may limit the applicability of checked coverage.
Moreover, our work is also different from the existing cost reduction techniques in that Seshat

utilises the natural language channel between the target program and the test cases to construct
the prediction model. Recent improvements of neural language models have enabled various
techniques to exploit the semantic information inferred from the natural language channel in
programs [2, 19, 40]. Since the natural language channel is both related to and constrained by the
algorithm channel [2], a hybrid approach would be promising to overcome the limitation of any
existing analysis that aims to reason about program semantics. For example, neural word embedding
has been used to discover semantically similar code snippets [15], as well as for translating API
descriptions into corresponding formal specifications [1]. Recurrent Neural Network (RNN) models
have been used to predict type signatures of JavaScript functions based on function and parameter
names and comments [31]. Similarly, Seshat aims to approximate the relationship between mutants
and test cases that kill them based on the similarity between their names in the embedding space.

8 CONCLUSION
In this paper, we propose Seshat, a Predictive Mutation Analysis (PMA) technique that can learn
and predict an entire kill matrix, as opposed to Predictive Mutation Testing (PMT) whose aim
is to predict the mutation score. Seshat exploits a Natural Language channel in the source code
and test, as well as the mutant-specific code fragments to organise input features through Deep
Neural Network (DNN). Empirical evaluation on 37 subjects in Defects4J and two widely used Java
mutation tools, Major and PIT, demonstrates that Seshat predicts kill matrices with average F-score
of 0.83 and is 39 times faster than traditional mutation analysis. In addition to predicting existing
tests precisely, Seshat generalises to the new tests, with degradation of the prediction accuracy
by 0.05 in F-score. Seshat outperforms PMT and a coverage based baseline model in predicting of
the entire kill matrix by 0.14 and 0.45 point in F-score, and performs as well as PMT in predicting
of the mutation score only. An application study on Mutation Based Fault Localisation (MBFL)
technique shows that Seshat is successfully applied to the MBFL technique called SIMFL and it
achieves competitive accuracy even when it uses the predicted kill matrices instead of real ones.
We also show that Seshat can exploit NL channel of automatically generated test suite as long as a
meaningful naming convention is upheld.
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