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Abstract—Software bugs1 pose an ever-present concern for de-
velopers, and patching such bugs requires a considerable amount
of costs through complex operations. In contrast, introducing bugs
can be an effortless job, in that even a simple mutation can
easily break the Program Under Test (PUT). Existing research
has considered these two opposed activities largely separately,
either trying to automatically generate realistic patches to help
developers, or to find realistic bugs to simulate and prevent
future defects. Despite the fundamental differences between them,
however, we hypothesise that they do not syntactically differ from
each other when considered simply as code changes. To examine
this assumption systematically, we investigate the relationship
between patches and buggy commits, both generated manually
and automatically, using a clustering and pattern analysis. A large
scale empirical evaluation reveals that up to 70% of patches and
faults can be clustered together based on the similarity between
their lexical patterns; further, 44% of the code changes can
be abstracted into the identical change patterns. Moreover, we
investigate whether code mutation tools can be used as Automated
Program Repair (APR) tools, and APR tools as code mutation
tools. In both cases, the inverted use of mutation and APR tools
can perform surprisingly well, or even better, when compared to
their original, intended uses. For example, 89% of patches found
by SequenceR, a deep learning based APR tool, can also be found
by its inversion, i.e., a model trained with faults and not patches.
Similarly, real fault coupling study of mutants reveals that TBar,
a template based APR tool, can generate 14% and 3% more
fault couplings than traditional mutation tools, PIT and Major
respectively, when used as a mutation tool. Our findings suggest
that the valid scope of mining code changes for either mutation
or APR can be wider than previously thought.

Index Terms—Software bug, software patch

I. INTRODUCTION

Software bugs are prevalent, long-lived, and expensive to
fix, thus they have been a major concern in software mainte-
nance [1], [2]. The high cost of bug fixes mainly stems from
the need for the developers to deeply engage with the bugs by
following such steps as 1) reading the bug report, 2) inspecting
the possible buggy locations, and 3) making several attempts to
write patches (which involve compiling and running tests). All
of these steps require a deep understanding of both the bug
and the Program Under Test (PUT). In addition, developers
should be aware of the possibility that, despite fixing the initial

1In this paper, we use ‘fault’ and ‘bug’ interchangeably to refer to unwanted
behaviour of a program during its execution.

buggy symptoms, they may have introduced a new bug with
their patch [3], [4], further adding to the complexity of bug
fixes.

On the contrary, we note that it is trivially easy to intro-
duce bugs. Given access to the source code, bugs can be
introduced effortlessly, mainly because there exist infinitely
more incorrect programs than the ones that satisfy the given
specification in the space of all programs. This fundamental
difference between writing patches and introducing bugs also
can be seen in two types of automated software testing and
debugging techniques: Automated Program Repair (APR) [5],
which automates the process of writing patches, and Mutation
Testing [6], which automates the process of introducing bugs.
To successfully repair a bug, the APR technique needs to
overcome many different challenges: it first has to accurately
localise the bug, then find a specific combination of existing
ingredients to compose a patch, and finally apply and validate
the patch by executing test cases. On the contrary, mutation
testing is context insensitive and is allowed to make small
syntactic changes to an arbitrary location in the source code.

However, if we look closely at how APR tools operate,
they act like mutation tools. While trying to find a patch,
it is natural for them to produce many faults, which are
the by-product of the search algorithms adopted by APR
techniques. On the relationship between mutation testing and
APR, Weimer et al. observed that Generate & Validate (G&V)
APR techniques form a dual of mutation testing [7]: APR aims
to find mutants that pass the tests, while mutation testing aims
to find mutants that fail the tests. One example that exploits
this duality is PraPR [8], a recently proposed APR tool that
directly augments the mutation operators of a Java mutation
testing tool, PIT [9]. The evaluation of PraPR shows that the
repair attempts using only PIT mutation operators perform
surprisingly well: for Defects4J v1.2.0 subjects, it produced
the plausible patches for 106 buggy versions, correct patches
for 17 buggy versions out of 395 versions.

Given that APR and mutation testing tools have exactly
opposite purposes, how can one be successfully used as
another? We hypothesise that it is mainly because the patches
and faults, when seen simply as changes made to the code,
are not that different from each other. For example, consider
a code change, from a + b to a - b. Although this is a
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1 @@ -64,9 +64,6 @@ protected
DateTimeSerializerBase(Class<T> type,↪→

2 {
3 ...
4 - if (property == null) {
5 - return this;
6 - }
7 JsonFormat.Value format = ...
8 if (format == null) {
9 return this;

Fig. 1: Fix commit of JacksonDatabind-102 in Defects4J

widely used arithmetic mutation operator, it can equally be a
bug fixing patch. Similarly, even a code change that appears
to be a common fix pattern, may eventually turn out to be
a fault-inducing change, and vice versa. Figure 1 shows a
such case where the developer-written patch is a deletion of
a null checker. This might seem counter-intuitive as it is an
inversion of a common fix pattern (i.e., adding a null checker)
that becomes a fault-inducing pattern, but in this case, it turns
out to be a correct patch.

Based on this observation, we design three empirical studies
to investigate the relationship between the patches and faults
from different angles. First, we compare their lexical and
structural similarities by leveraging code change clustering and
pattern inferring algorithms, then evaluate whether the patches
and faults are grouped together. Second, we evaluate two
mutation tools as APR tools and evaluate their effectiveness.
Finally, turning the table, we directly convert APR tools into
mutation tools and evaluate their ability to generate mutants
that are coupled with real faults. The results of our empirical
evaluation suggest that buggy and fixing code changes are in
fact more similar to each other than we expect. The implication
of this finding is that, when mining a particular type of code
changes (i.e., either bug inducing commits, or bug fixing
commits), we can consider wider range of code changes than
we thought before. Further, it suggests a future direction of
cross-purpose uses of both APR and mutation testing tools, or
the development of a unified technique.

The main contributions of the paper are as follows:
• We empirically evaluate the similarities between patches

and faults using 6k code changes in C projects and 7k
code changes in JavaScript projects, mined from various
open source repositories. The results suggest that patches
and faults are in fact similar to each other, as they can
be grouped together by the code change clustering and
pattern inferring algorithms.

• We present an empirical evaluation of mutation tools
as APR techniques. We employ mutation tools that are
inversions of existing APR tools, and evaluate these
variations by applying them to the buggy programs in
Defects4J. The results shows that IBIR [10] (i.e., inverted
TBar [11]) and inverted SequenceR [12] can still success-
fully generate 42 and 17 plausible patches, which are only
eight and two fewer than their original forms.

• We also demonstrate that existing APR tools can be con-
verted into mutation tools. A mutation coupling analysis

using real faults in Defects4J shows that TBar, a template-
based APR tool, can successfully generate 14% and 3%
more fault couplings than widely studied mutation tools,
PIT and Major, respectively.

The rest of the paper is organised as follows. Section II
introduces a motivating example. Sections III, IV, and V
provide a detailed experimental design and results of the three
empirical studies respectively. Section VI discusses the threats
to validity. Section VII presented related previous work and
Section VIII concludes.

II. A MOTIVATING EXAMPLE

Figure 2 contains actual code changes from Defects4J. Let
us begin with a simple question: are these patches, or bug
inducing changes?

- if (dataset != null) {
+ if (dataset == null) {

(a) Fix change

- if (dataset == null) {
+ if (dataset != null) {

(b) Inverted fix change (i.e., bug inducing change)

1 public LegendItemCollection getLegendItems() {
2 ...
3 if (this.plot == null) {
4 return result;
5 }
6 int index = this.plot.getIndexOf(this);
7 CategoryDataset dataset =

this.plot.getDataset(index);↪→

8 - if (dataset != null) {
9 + if (dataset == null) {

10 return result;
11 }
12 int seriesCount = dataset.getRowCount();
13 ...

(c) Fix change with surrounding context

Fig. 2: A fix commit of jfreechart (Chart-1 in Defects4J)

Figure 2a contains an example fix change from jfreechart
that modifies != to ==, while Figure 2b shows the inversion
of Figure 2a. Without the captions, it is not easy to tell them
apart. We hypothesise that a code change itself is context
insensitive, which is why it is hard to distinguish a patch from
a bug inducing change, and vice versa. The difference becomes
clearer only when we consider the surrounding context of
the change, as shown in Figure 2c. An earlier conditional
statement if (this.plot == null) has a similar predicate
and the same return statement; we also observe that the
variable dataset is subsequently used in Line 13, suggesting
that it is more natural to return when it is null. With the help
from the context, we can guess that the change in Figure 2a
is likely to be a fixing change, and not a bug inducing one.
This example raises the questions of whether mining and
interpreting the given code changes only as either fix or bug
inducing is desirable, as well as how actually different they are
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from each other. In the following three sections, we investigate
and discuss those observations with three empirical studies,
respectively.

@@
expression E0;
@@
- if (isupper((int )*E0))
+ if (isupper(*E0))
{

- *E0 = tolower((int )E0);
+ *E0 = tolower(*E0);

}

(a) IfStatement/21/1/0
@@
expression E0;
@@
- if (isdigit((int )*E0))
+ if (isdigit(*E0))
{
...
}

(b) IfStatement/21/1/1

Fig. 3: Example clusters resulted from FlexiRepair

III. SIMILARITY STUDY (RQ1)
RQ1. How similar are patches and faults to each

other? We answer RQ1 using two approaches: clustering both
patches and faults, and abstracting both as change patterns.
With clustering, we investigate whether patches and faults can
belong to the same cluster, whereas with pattern inferring, we
investigate whether patches and faults can be abstracted into
the same pattern. Answers to these questions would provide
evidence of how much the patches and faults have similar
structures and patterns. We perform the clustering analysis
using FlexiRepair [13], and the pattern inferring analysis using
SemSeed [14].

A. Cluster Analysis with FlexiRepair
FlexiRepair [13] is an extension and combination of

FixMiner [15] and Spinfer [16]. Below, we will briefly intro-
duce them with the procedure of how the clusters are formed.

1) FixMiner: To represent a code change, FixMiner [15]
constructs a tree representation with three types of informa-
tion: Shape, Action, and Token. Each of the information
type corresponds to an abstraction level of the resulting
representation. FixMiner starts the clustering at the highest
abstraction level, which is Shape, and successively applies
clustering to the results from the previous abstract level with
Action and Token.2 First, at abstraction level of Shape,
FixMiner groups the code changes based on the type of the
root node of AST and its depth (e.g., IfStatement/7), and
identifies their clusters using algorithms of GumTree [17].
Next, the abstraction level of Action further divides the
clusters generated by Shape, based on the change opera-
tions identified by GumTree. These clusters are labelled as
node/depth/ShapeTreeClusterId (e.g., IfStatement/7/2).

2As FlexiRepair only considered Shape and Action for clustering, we
exclude Token from the clustering process.

2) Spinfer: Spinfer [16] aims to infer semantic patches
of Linux kernel by identifying the similar code fragments
and control flows across code changes. Following FlexiRe-
pair [13], we use Spinfer to finalise the clustering process on
each cluster by FixMiner. As a result, the clusters generated
by Spinfer have the lowest abstraction level and indexed
as node/depth/ShapeTreeClusterId/ActionTreeClusterId (e.g.,
IfStatement/7/2/0).

The final output of Spinfer is the clusters of generic patches
in the form of Coccinelle [18] transformation rules: Figure 3
shows two of generated clusters. They are assigned to the
same cluster of IfStatement/21/1 at the Action abstraction
level by FixMiner, but have been further divided into two
smaller clusters, IFStatement/21/1/0 and IFStatement/21/1/1,
by Spinfer because they have different structures of body of
if statement.

TABLE I: C subject programs for cluster analysis using
FlexiRepair

Repository # Commits

libtiff 3,570
cmake 38,414
redis 8,770
gzip 604
libarchive 5,472
cairo 11,724
curl 26,967
tcl 17,145
nginx 6,858
apr 8,945
openssh-portable 11,004
gmp 16,782
lighttpd1.4 3,882
lighttpd2 1,551
git 46,715
MonetDBLite-C 48,461
freeradius-server 37,535
bind9 31,286
tmux 7,790
gstreamer 19,016

3) Dataset: We reuse the dataset presented by FlexiRepair:
it contains mined commits in C projects from Github, Gitlab,
and Savannah. However, it was not possible for us to process
all repositories provided by the FlexiRepair dataset due to
the limited computational resources. Instead, we randomly
selected 20 repositories, as listed in Table I, and collect the
code changes with the inverted changes, resulting in 720,000
changes. After applying the filtering rules of FlexiRepair to
extract only fix commits, we have 3,000 fix changes that result
in total 6,000 code changes considering inverted changes (i.e.,
bug inducing changes).

4) Evaluation: For the evaluation of FlexiRepair clusters,
we use three levels of clusters from Shape, Action, and
Spinfer, respectively. For the sake of simplicity, we hereafter
denote the three levels as ‘Level1’, ‘Level2’, and ‘Level3’. We
report the number of clusters that include both the patches
and faults for each level. Note that we cannot report other
evaluation metrics such as cluster membership accuracy, as
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there is no ground truth of correct cluster membership for
code changes.

B. Pattern Analysis with SemSeed

SemSeed [14] presents an efficient algorithm for seeding
realistic bugs by abstracting and matching bug inducing pat-
terns. SemSeed selects an AST subtree of the changed line and
extracts two token sequences (before and after the change)
from the subtree. From them, the bug seeding patterns are
inferred by abstracting all identifiers and literals into the
placeholders, resulting in a pair of abstracted token sequences,
t = ⟨tx, ty⟩. The tokens in tx and ty are either identifier or
literals, or non-identifiers and non-literals.

As SemSeed only learns its patterns from faults, we modify
it to consider both patches and faults, and see how many same
⟨tx, ty⟩ pairs are found in both of them. Let t ∈ Tp be the
pairs from the patches and t ∈ Tf be the pairs from the
faults. We report the number of pairs that exist in both Tp

and Tf , which would be the code changes that represent both
patches and faults. Based on the dataset presented by SemSeed
that contains 3,600 inverted fix changes from 100 JavaScript
projects in Github, we build our own that includes both fix
and inverted changes, resulting in total 7,200 code changes.

TABLE II: Cluster analysis with FlexiRepair. x refers to the
number of clusters having both patches and faults and y refers
to the number of total clusters.

Cluster Level1 Level2 Level3
level (node/depth) (ShapeTreeClusterId) (SpinferClusterId)

x / y 222 / 316 (70%) 569 / 1,800 (31%) 227 / 3,859 (7%)

@@
identifier I0;
expression E1;
@@
- char *I0 = rad_malloc(E1 + 1);
+ char *I0 = rad_malloc(E1);

(a) DeclStmt/10/0/0
@@
identifier I0;
expression E1;
@@
- const char *I0 = E1;
+ char *I0 = (char *)E1;

(b) DeclStmt/10/18/2

Fig. 4: Example Level1 cluster (DeclStmt/10)

C. Results of Cluster Analysis with FlexiRepair

Table II shows the number of clusters that have both patches
and faults (x) and the total number of clusters (y). Among
all clusters, 70% of Level1 clusters contain both patches and
faults, followed by 31% of Level2 clusters, and 7% of the
Level3 clusters: the trend confirms our expectation that the less
we abstract the code changes, the more separated they would
be. Figures 4 and 5 present a closer look at how clusters are
formed at Level1 and Level2: Figure 4a and Figure 4b are in

@@
identifier I1 = {getch,strequal};
expression list E2;
expression E0;
@@
- E0 = I1(E2);
+ E0 = (char )I1(E2);

(a) ExprStmt/5/0/1
@@
assignment operator A1;
expression E2, E0, E3;
@@
- E0 A1 strlen(*E2) + E3;
+ E0 A1 (int )strlen(*E2) + E3;

(b) ExprStmt/5/0/2

Fig. 5: Example Level2 cluster (ExprStmt/5/0)
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Fig. 6: The number of code changes for each Level3 cluster.

same cluster of DeclStmt/10, and Figure 5a and Figure 5b are
in same cluster of ExprStmt/5/0. Both levels have placeholder
identifiers or expressions that can be replaced, but Level2
clusters tend to show closer resemblance.

- reject(error);
+ reject(convertImapError(error));

(a) Fix commit of Adobe Brackets @a460c47

- callback(_err);
+ callback(mapError(_err));

(b) Inverted fix commit of nylas-mail @93942e7

Fig. 7: Two code changes having same SemSeed patterns

In addition, we examine how many code changes are in
each Level3 cluster, since the overlaps of the patches and
faults in Level3 clusters are only 227 out of 3,859 cases (7%).
Figure 6 shows that 67% of Level3 clusters contain only one
code change, failing to be grouped with any others due to
the low abstraction level. Once we exclude such singletons,
the proportion of the clusters that have both the patches and
faults becomes 22%.

D. Results of Pattern Analysis with SemSeed

Next, we analyse the patterns of the patches and faults
using SemSeed. We count the code changes whose patterns

4



(t) are found in both patches (Tp) and faults (Tf ). Out of
3,951 code changes for each group, 1,752 code changes (44%)
have patterns found in both Tp and Tf . For example, Figure 7
shows two code changes from different projects: Figure 7a
is a fix change from Adobe Brackets which adds a method
call convertImapError around error, and Figure 7b is
a bug inducing change from nylas-mail which does similar
modifications to Figure 7a. Both changes are abstracted into
the pattern from Idf1(Idf3); to Idf1(Idf2(Idf3)); where Idf
represents a placeholder identifier.

Answer to RQ1: Up to 70% of patches and faults can
be clustered together by FlexiRepair; 44% of them can be
abstracted into the same pattern by SemSeed. We conclude
that patches and faults are not mutually exclusive and can
be similar to each other.

11 339

TBar TBar 1

(a) TBar and TBar−1

4 215

SequenceR SequenceR 1

(b) SequenceR and SequenceR−1

Fig. 8: The number of bugs for which mutation or APR can
generate plausible patches.

IV. MUTATION-TO-APR STUDY (RQ2)

RQ2. Can mutation tools be APR tools? Given that the
patches and faults have similar forms, we now move on to
the cross-evaluation between them by investigating the patch
effectiveness of the mutation. We treat the generated faults as
patches and see whether they are actually plausible patches. If
the patches and faults are fundamentally different and mutually
exclusive, mutation tools will fail to generate any plausible
patches.

Ideally, we would use existing mutation tools to perform
this study. However, among the available and widely used
Java mutation tools, PIT [9] has already been evaluated as an
APR tool by PraPR [8], whereas Major [19] does not allow
any modifications that are necessary for our experimentation
as its source code is not available. As a result, we use
IBIR [10], which mutates source code using inverted templates
of TBar [11], and SequenceR−1, which is originally the Neural
Machine Translation (NMT) based APR tool, SequenceR [12],
but trained with inverted dataset so that it ‘translates’ correct
code to buggy code. Essentially, these two tools are direct
inversions of APR tools, meaning that they are now designed
to introduce bugs. Consequently, if these inversions can still

patch bugs, it would show that our hypothesis about the
similarities between patches and bugs is correct.

A. Modification Details

For this study, we introduce the following modifications to
the original tools.

• IBIR: To use IBIR as an APR tool, we take the source
code of TBar and replace the fix templates of TBar with
the templates of IBIR. We switch templates instead of
directly using IBIR, in order to take advantage of APR
related support functionalities that already reside in TBar.
We denote this modified tool TBar−1 to differentiate it
from the original TBar as well as IBIR.

• SequenceR: SequenceR learns to translate a buggy code
into a correct code using the fix changes. We follow the
same training procedure, but we place the buggy code
in the position of the correct code, and vice versa: this
model will learn how to translate the correct code to the
buggy code. We denote this model SequenceR−1.

B. Evaluation Metrics and Configurations

We report and compare the number of bugs for which
mutation and APR tools generate plausible patches. We use
Defects4J v1.2.0, which includes four project and 231 bugs.3

We use the old version of Defects4J, v1.2.0, as some of
the studied tools are specifically designed to target Defects4J
v1.2.0. Note that we compare SequenceR and SequenceR−1

using only 75 bugs, as the original tool is designed to target
only one line patches.

C. Results

We run two mutation tools, TBar−1 and SequenceR−1, and
two corresponding APR tools, TBar and SequenceR, on the
buggy programs in Defects4J. Figure 8 depicts two Venn
diagrams that show the number of bugs for which each tool can
generate plausible patches. TBar generates plausible patches
for 50 bugs, which is eight more than those fixed by TBar−1;
SequenceR generates plausible patches for 19 bugs, which is
two more than those fixed by SequenceR−1. There are overlaps
of 73% (39) between TBar and TBar−1, and 71% (15) between
SequenceR and SequenceR−1, respectively. Although, APR
tools are better than mutation tools at generating plausible
patches in general, the results suggest that mutation tools can
successfully perform as APR tools even though they learnt to
operate in the opposite direction.

We also perform a qualitative analysis of the bugs that either
APR or mutation tool exclusively fixes. Of 11 bugs fixed only
by TBar, eight are fixed with the insertion operators, five of
which are related to adding null pointer checkers. On the
other hand, out of three bugs fixed only by TBar−1, two are
fixed with the deletions operators. We suspect that this is due
to the difference in the number of operators in these tools:
TBar includes 12 insertion operators but only two deletion
operators, meaning that TBar−1 has 12 deletion operators and
two insertion operators.

3See details at https://github.com/rjust/defects4j/tree/v1.2.0.
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SequenceR exclusively fixes four bugs, three of which are
fixed with the variable replacements. The two exclusive fixes
by SequenceR−1 are also related to the variable replacement
and changing the condition of a if statement. Since SequenceR
is an NMT based tool, it is difficult to analyse and interpret its
operations. Further analysis would require improved explain-
ability of the underlying NMT models.

Answer to RQ2: Despite having learnt from faults, mutation
tools can successfully find plausible patches for 42 and 17
buggy programs in Defects4J, compared to their counterpart
APR tools that find plausible patches for 50 and 19 buggy
programs.

V. APR-TO-MUTATION STUDY (RQ3)

RQ3. Can APR tools be mutation tools? We investigate
whether the code changes produced by APR tools can be
used as bug injections, despite the original intention of being
patches. Conducting a real fault coupling study by following
Just et al. [20], we evaluate the effectiveness of mutants pro-
duced by APR tools. As there are inherent differences between
APR tools and mutation tools, we describe the challenges we
faced, as well as how we dealt with them.

A. What kinds of APR tools can we modify?

Table III presents a list of Java APR tools we have consid-
ered. Our final selection criteria are as follows:

• Availability: we exclude the tools that are not publicly
available or do not make their source code publicly
available. Hercules [21], CapGen [22], and CURE [23]
are excluded for this reason.

• Executability: We exclude ssFix [24] because it fails
to connect to the private code search engine, and Co-
CoNut [25] because it has unresolved issues in prepro-
cessing of training data as well as the model training.4

• Failing tests: We exclude the tools that require fail-
ing tests for patch generation, because we will apply
them to correct programs for injecting faults. We ex-
clude APR tools based on genetic programming, such as
GenProg [26] and ARJA [27], because they use fitness
functions that check whether tests that originally failed
subsequently pass.

After filtering, we are left with four APR tools: SimFix [28],
PraPR [8], TBar [11], and SequenceR [12]. These have all
been recently published and open sourced; further, they do
not require failing tests.

B. How to modify them?

Due to the differences in design goals between APR and
mutation tools, we are forced to make a few modifications to
the chosen APR tools:

4https://github.com/lin-tan/CoCoNut-Artifact/issues/2

TABLE III: Considered Java APR tools

Tool Selected? Public? Working? Failing
tests

GenProg [26] No Yes Yes Yes
Angelix [29] No Yes Yes Yes
Nopol [30] No Yes Yes Yes
ssFix [24] No Yes No No
CapGen [22] No No - No
ARJA [27] No Yes Yes Yes
SketchFix [31] No Yes Yes Yes
SimFix [28] Yes Yes Yes No
Hercules [21] No No - No
PraPR [8] Yes Yes Yes No
TBar [11] Yes Yes Yes No
SequenceR [12] Yes Yes Yes No
CoCoNut [25] No Yes No No
CURE [23] No No - No

1) Where to fix (i.e., mutate): APR tools employ FL tech-
niques to locate the buggy statements. In contrast, mutation
tools usually have manual options for specifying the files to
be mutated. Thus, we make APR tools to target the locations
to be mutated by directly manipulating the FL results.

2) When to terminate: for mutation testing, we assume that
PUT has no defects, i.e., it has a green test suite. However,
APR tools assume that PUT has defects, so they terminate
when the candidate patch passes all tests. As our mutation goal
is to simulate all possible mutants, we modify the termination
criterion of APR tools so that they generate all target mutants
without considering test results.

3) Filtering some pre-defined patterns: TBar is based on
the templates that have been collected from the fix patterns in
the repositories, as well as patches generated by other APR
tools. Among the collected patterns, there are some patterns
that are highly likely fix-patterns, e.g., inserting a null pointer
checker. Even if it is possible that the developers would insert
a wrong or inappropriate null pointer checker, we exclude
such patterns by default, as we posit that those cases are rare.
The two APR tools, TBar and PraPR, are modified in this
way. However, to evaluate the effect of this filtering strategy,
we also include the versions without such filtering, which we
denote TBarα and PraPRα.

4) Sampling: APR tools are generally designed to focus
their efforts into a single location that is believed to be the
location of the fault (which is why their results are highly
dependent on the FL results [32]). In contrast, mutation tools
aim to evenly spread their efforts across the entire program,
with ways to sample mutants to control their numbers. In this
regard, we modify APR tools so that we randomly sample
only five mutations per location.

C. Coupling Study

Coupling Effect Hypothesis (CEH) states that, if a test suite
can detect and kill simple mutants, it will also be able to detect
larger and more complex faults [33]. This is why mutation
testing is supposed to work. As such, the effectiveness of a
mutation testing tool can be precisely measured if we can
measure the degree of coupling with real faults.
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We follow the same procedure of the coupling study adopted
by Just et al. [20]. The mutants are said to be coupled with real
faults, if they are killed only by the test cases that reveal the
real faults. Given that there are failing test cases, fti ∈ FT , let
Tpass be a set of passing tests and Tfail be a set of tests that
includes all tests in Tpass and a single failing test case, i.e.,
Tfail = Tpass ∪ {fti}. We then compose the pairs of Tpass

and Tfail denoted by ⟨Tpass, Tfail⟩ using the bugs and the
corresponding failing test cases in Defects4J. For each pair, if
there is at least one mutant that survives Tpass but is killed by
Tfail, we mark the pair as coupled. Generating mutants using
the modified APR tools, we compare the number of coupled
pairs with the results from the two baseline mutation tools,
PIT and Major.

Although we limit the mutant generation using random
sampling at runtime, the number of generated mutants varies
significantly between the studied tools. It would not be a
fair comparison if there is a tool that generates many more
mutants than others, as it will by definition have a higher
chance of being coupled with real faults. Therefore, for any
tool that generates more mutants than our reference mutation
tool, Major, we further take a random sample out of those tools
so that we consider the same number of mutants as Major.
We repeat the experiment 30 times and report mean of the
numbers. We will also report the unsampled total couplings,
to see the impact of this additional sampling.

D. Configurations

We use the default set of mutation operators provided by
Major in Defects4J, and the mutators in ‘old defaults group’
for PIT.5 To compose ⟨Tpass, Tfail⟩ pairs from bug bench-
mark, we use Defects4J v1.2.0 and exclude some subjects
that we fail to run all subject tools on, resulting in 493
pairs. We ignore any equivalent mutants, as we are only
interested in coupled mutants, while equivalent mutants cannot
be coupled by definition. For all APR tools, we follow the
settings specified in their original study. To alleviate a huge
cost of running tests against mutants, we generate mutants on
the files that the target faults reside in.

TABLE IV: Results of a fixed-size fault coupling study

Tool # Coupled Pairs # Total Pairs # Total Mutants

Major 300 493 31,877
PIT 249 493 29,855
TBar 316 493 31,679
TBar−1 314 493 31,679
TBarα 306 493 31,731
SequenceR 90 493 29,291
SequenceR−1 132 493 24,720
SimFix 99 493 29,411
PraPR 204 493 31,874
PraPRα 175 493 31,877

5https://pitest.org/quickstart/mutators/
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Fig. 9: A distribution of the number of coupled mutants for
each coupled pair.

E. Results

We begin by presenting the results of the fixed-size fault
coupling study, for which we sample the same number of mu-
tants as Major from all studied mutation tools. Subsequently,
we present the results of unrestricted coupling study, for which
we use all mutants generated by each tool. Finally, we present
a qualitative analysis of the new types of mutations introduced
by APR tools.

1) Fixed-Size Coupling Study Results: Table IV presents
the results of the fixed-size coupling study: it shows the total
number of pairs, the number of coupled pairs, and the total
number of mutants considered for each tool. TBar and its
variants perform better than two traditional mutation tools by
making up to 316 coupled pairs out of total 493 pairs (64%).
In addition, we examine the number of coupled mutants for
each coupled pair as shown in Figure 9. On the pairs that
have more than ten coupled mutants, TBar makes 133 coupled
paired whereas Major and PIT make 48 and 56 coupled pairs.6

It is well known that the fix templates of TBar have been a
powerful baseline for APR, and its effectiveness is shown to
be valid for mutant generation.

APR tools other than TBar, on the other hand, are outper-
formed by the two mutation tools, Major and PIT. A closer
inspection of the mutants generated by SequenceR and SimFix
suggests that the degree of freedom these tools have sometimes
results in mostly frivolous code changes. Mutations created by
these tools include insertion of duplicate logical clauses (e.g.,
changing if (a != 0) to if ((a != 0) && (a != 0))) or
insertion of pointless parentheses (e.g., changing return m !=

null && m.containsKey(value) to return (m != null) &&

(m.containsKey(value))). We hypothesise that these kinds
of changes lack purpose, both as a patch and as a mutation:
compared to the carefully curated change templates of TBar,
the changes made by SequenceR are much more difficult
to interpret as it depends on a sequence-to-sequence NMT
model. Since the NMT model does not concern semantics of
the produced token squences, some of the translations may
lack purposes. Similarly, SimFix depends mostly on structural

6Note that the duplicated mutants [34], i.e., mutants that are semantically
different from the original, but equivalent to each other, may inflate these
numbers. However, since mutant equivalence is in general undecidable, we
simply report the raw results. We expect TBar to be largely free from this
effect, as each mutant it generates correspond to a unique template. We have
excluded syntactic duplicates.
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similarity to source the change to be applied as mutation.
Without considering the surrounding semantic context, the
changes are also likely to lack focus.

Interestingly, PraPR performs worse than PIT, producing
204 coupled pairs compared to 249 made by PIT, although it
is built based on PIT by augmenting nine mutation operators of
PIT with six additional operators. However, it is the six newly
introduced operators that mainly contribute to the performance
deterioration. These operators perform either addition of field
and method guards, or addition of pre/post conditions, which
we think are too specialised for the purpose of program repair
to perform as generic fault injection.

Finally, we investigate whether filtering pre-defined patterns
has any merits by comparing TBar with TBarα, and PraPR
with PraPRα, respectively. Both comparisons show that the
filtering helps generation of coupled mutants: TBar makes ten
more coupled pairs, while PraPR makes 29 more.

TABLE V: Results of an unrestricted fault coupling study

Tool # Coupled Pairs # Total Pairs # Total Mutants

Major 300 493 31,877
PIT 306 493 48,133
TBar 416 493 83,185
TBar−1 413 493 82,943
TBarα 414 493 103,603
SequenceR 154 493 50,072
SequenceR−1 164 493 30,773
SimFix 166 493 64,887
PraPR 326 493 186,640
PraPRα 328 493 242,258

2) Unrestricted Coupling Study Results: Table V shows
the results of a coupling study using all generated mutants.
TBar and its variants again outperform others by making up
to 416 coupled pairs out of 493 total pairs (84%), showing
that pre-defined fix patterns are capable of generating effective
mutants. SequenceR and SimFix also perform better when we
do not restrict the number of mutants: they generate 64 and 67
more coupled pairs compared to the fixed-size coupling study
results. However, they are still significantly less effective than
PIT and Major.

While unrestricted PraPR and PraPRα outperform PIT and
Major, this is mainly thanks to the huge number of mutants
they generate: PraPRα generates 200k mutants, compared to
40k generated by PIT. The operators newly introduced to
PraPR are responsible for these extra 160k mutants, but they
only contribute 20 additional coupled pairs.

In the unrestricted coupling study, TBarα and PraPRα

subsume TBar and PraPR, respectively. Therefore, the effect
of filtering some of the pre-defined patterns can be clearly ob-
served by comparing them: both TBarα and PraPRα only make
two more coupled pairs than TBar and PraPR, respectively,
despite generating 1.2 times more mutants. Consequently, we
conclude that the advantages of using all pre-defined patterns
are negligible.

3) New and Stronger Mutation Operators: Just et al. [20]
reported that 27% of real faults are not coupled to the

+ for (int i = 0; i < listSize; i++) {
+ if (!ShapeUtilities.equal ...

(a) Chart-6 (fix)

- ... Partial(iChronology, newTypes, newValues);
+ ... Partial(newTypes, newValues, iChronology);

(b) Time-4 (fix)

- ... convertLocalToUTC(localInstant, false);
+ ... convertLocalToUTC(localInstant, false, instant);

(c) Time-26 (fix)

- return allResultsMatch(n, MAY_BE_STRING_PREDICATE);
+ return anyResultsMatch(n, MAY_BE_STRING_PREDICATE);

(d) Closure-10 (fix)

+ removeDuplicateDeclarations(root);
...
- removeDuplicateDeclarations(root);

(e) Closure-102 (fix)

Fig. 10: The real faults in Defects4J that are exclusively
coupled with the mutants of APR tools.

mutants generated by Major, and categorised the types of those
uncoupled real faults. Based on it, we investigate the real faults
to which PIT and Major cannot couple any mutants, but APR
tools can, and report the operators used by the APR tools.

• Statement or code deletion: TBar can delete a single or
multiple lines of code (see Figure 10a), whereas both PIT
and Major lack the Statement Deletion (SDL) mutation
operator to avoid compilation failures.

• Argument swapping: TBar and PraPR can generate mu-
tants that swap the arguments to the method call (see
Figure 10b), as they anticipate swapped arguments as a
potential developer mistake.

• Argument omission: TBar, PraPR, and SequenceR can
remove extra arguments from a method call (see Fig-
ure 10c), anticipating such omissions as a potential mis-
take.

• Similar method called: PraPR can change the method
called to a similar method since PraPR has a method
replacement operator that is not a part of PIT operators
(see Figure 10d), in anticipation of developer mistakes.

• Statement shifting7: TBar can change the location of a
statement to the other line thanks to its move statement
operator (see Figure 10e).

Answer to RQ3: APR tools can successfully generate the
mutants coupled with real faults, revealing new and stronger
mutation operators.

VI. THREATS TO VALIDITY

Threats to internal validity concern any factor that may
influence the observed effects. To mitigate such threats, we
limit the APR and mutation tools we study to those that

7This type was not originally listed by Just et al. [20].
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are publicly available and widely studied. We also limit any
modification we introduce to the minimum.

Threats to external validity concern the degree to which our
results can be generalised. We tried to incorporate as many
datasets and programming languages as possible, by studying
C and JavaScript (RQ1) as well as Java (RQ2 and 3). While
our idea is not inherently confined to a specific programming
language, only further experimentations can generalise our
results to new tools and languages. We adopt Defects4J as
the standard benchmarks in both mutation testing and APR.

Threats to construct validity occur when the metrics we
use fail to measure what we initially plan to observe. For
RQ1, we simply count the number of clusters as there are
no clear ground truths: we believe this is the simplest and
the most direct measurement we can take. For RQ2, we only
report the number of bugs for which subject tools can generate
plausible patches. This is a simple count based metric that can
be validated by test execution. For RQ3, we report the number
of coupled pairs, following a widely accepted protocol.

VII. RELATED WORK

Weimer et al. [7] explored the duality between APR and mu-
tation testing. Specifically, they formalised and characterised
Generate & Validate (G&V) program repair as a dual of
mutation testing: the equivalent mutant problem is related to
the redundant repairs, while the coupling effect is related to
the hypothesis that simple operators can fix many complex
faults. Both assume the competent programmer hypothesis,
meaning that APR also assumes that a relatively simple patch
can repair the bug. This is what PraPR explicitly exploits
using the mutation operators implemented in PIT [8]. In this
work, we further investigate the approach taken by PraPR
using TBar−1 and SequenceR−1. Moreover, our work is not
confined to APR and mutation testing, but also considers the
similarities between human written patches and faults (RQ1).
While Weimer et al. proposed the duality as a theoretical
framework, we present empirical evidence of the relationship.

Brown et al. [35] proposed a mutant mining technique that
essentially inverts fix changes mined from open source reposi-
tories. In one of their experiments, they ask whether ‘forward’
and ‘backward’ patches are different. The forward patches
refer to the original fix changes, whereas backward patches
refer to their inversions (i.e., faults). Interestingly, their results
showed an overlap of 1,710 mined operators, out of 13,929
operators mined from both directions. However, all operators
were mined from a single project, Space [36], limiting the
scope of generalisation. We have conducted a larger empirical
evaluation with multiple programs and languages. Our results
also suggest that mining mutation operators only from one
direction may miss some relevant code changes.

While APR techniques can successfully patch many faults,
it is known that they also produce many incorrect changes
during the process [26]. This partly motivates our use of APR
tools as a source of code mutation. Recently proposed NMT
based APR techniques seek to avoid the generation of incorrect
and wasted patches by incorporating the surrounding contexts

better [23], [25]. The qualitative analysis of our results for RQ2
and 3 hints at the importance of contexts, calling for future
work on ways to representing as well as comparing them.

VIII. CONCLUSION & FUTURE WORK

This paper aims to relate two seemingly opposite concepts
in software testing, fixing (patch) and introducing bugs (fault).
We highlight their syntactic similarities based on empirical
evaluations. An analysis of 13k fix- and bug-inducing changes
collected from open source repositories shows that, when
abstracted and clustered together, it is difficult to distinguish
patches from faults: up to 70% of the patches and faults are
clustered together. Based on these results, we also show that
mutation tools can be successfully used as APR tools, and
vice versa. An evaluation using Defects4J bugs shows that
mutation tools generate plausible patches for 42 and 17 bugs,
only eight and two fewer than original APR tools, TBar and
SequenceR, respectively. Finally, we also show that APR tools
can successfully generate mutants that are coupled with real
faults. Our findings suggest that the scope of code changes
traditionally used to mine mutation operators, or to learn fix
patterns and templates, may need to be widened to incorporate
additional code changes that are relevant.

Future work could include a developer study where par-
ticipants are asked to guess whether the given code change
is a patch or a fault, to further understand the impact of
context as well as a process of speculation. In addition, another
interesting direction could be exploring the potential of using
our findings to improve software testing tools. One example
would be exploiting both directions of code changes to mine
the real faults in the open source projects. Previous work has
resorted to inverting the fix commits to generate the faults.
This is due to the fact that identifying bug-inducing commits is
challenging, as the developers may not be aware of introducing
a bug and it is likely to contain the changes unrelated to the
bug [37], [38]. On the other hand, identifying fix commits is
relatively straightforward, as the developers intend to fix the
bug with a commit message such as ‘This handles the bug
related to issue #10’. Our finding suggests that by reversing
the code changes we can simply double the size of the existing
dataset of real faults. A next step could be to conduct a
study that utilises this larger dataset, such as comparing the
performances of the learning-based static bug finders trained
on the original dataset and the larger one, respectively.
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