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Abstract

We present a critical review of Neural Coverage (NLC), a state-of-
the-art DNN coverage criterion by Yuan et al. at ICSE 2023. While
NLC proposes to satisfy eight design requirements and demon-
strates strong empirical performance, we question some of their
theoretical and empirical assumptions. We observe that NLC devi-
ates from core principles of coverage criteria, such as monotonicity
and test suite order independence, and could more fully account
for key properties of the covariance matrix. Additionally, we note
threats to the validity of the empirical study, related to the ground
truth ordering of test suites. Through our empirical validation, we
substantiate our claims and propose improvements for future DNN
coverage metrics. Finally, we conclude by discussing the implica-
tions of these insights.
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1 Introduction

Testing of Deep Neural Networks (DNNs) has become a crucial
aspect of their integration into various applications, sparking a
surge in the development of coverage criteria. These criteria draw
inspiration from traditional software testing methodologies, aiming
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to ensure the reliability and robustness of DNNs. A significant
milestone in this field was the introduction of Neuron Coverage
(NC) by DeepXplore in SOSP 2017 [29], marking the first coverage
criterion specifically tailored for DNNs. This drew considerable
interest within the Software Engineering (SE) community, leading
to the creation of various coverage criteria. Such criteria typically
analyse the activation space of inner neurons and quantify the extent
to which this space has been covered [19, 24].

At ICSE 2023, a new DNN coverage criterion called Neural Cov-
erage (NLC) was introduced [38]. NLC distinguishes itself from
prior coverage criteria by proposing and satisfying eight design re-
quirements, which a DNN coverage criterion is expected to satisfy.
To date, NLC is the only criterion that fulfils all these requirements.
As a hyperparameter-free metric, NLC characterises the correlation
between neurons’ continuous outputs. Empirical studies conducted
by the NLC proponents have demonstrated that NLC outperforms
other coverage criteria, underscoring the strength of its novel de-
sign [38]. The implementation of NLC, along with that of existing
coverage criteria, and all empirical results are publicly available,
which has gained significant traction, as evidenced by its 250+
GitHub stars.!

Despite the proponents’ claims and the empirical evidence, we
question some of the theoretical and empirical assumptions behind
the work by Yuan et al. [38].2 As suggested by Monperrus [27], we
believe that respectful critique and scholarly debate are essential to
the scientific process. While such discussions often occur within
technical contributions (e.g., in related work sections), they are
frequently superficial and biased toward the new approach. Explicit
discussion of limitations and open issues in a fully dedicated paper,
on the other hand, can provide a clearer understanding of the area,
pointing to better ways to advance the discipline.

Our critical review is driven by two primary motivations: (1)
concerns regarding the theoretical foundations of NLC, and (2)
concerns about its empirical validation. First, we articulate our con-
ceptual concerns by analysing NLC’s design in light of the eight
proposed requirements. Specifically, we highlight three major short-
comings: the lack of monotonicity (i.e., adding more tests should

Uhttps://github.com/Yuanyuan- Yuan/NeuraL-Coverage, accessed on February 11, 2025.
2Throughout the paper, we refer to Yuan et al. [38] simply as Yuan et al. (without
repeated citations).
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not decrease coverage), the lack of order independence (i.e., the cov-
erage value should remain unchanged under permutations of the
test suite), and the absence of a bounded coverage measure (i.e., the
coverage value should have a known upper bound to serve as a
stopping criterion). These are essential properties for any reliable
DNN coverage criterion. In detail, we explore why NLC fails to
serve as a sound coverage criterion, discuss the trade-offs involved
in satisfying the considered requirements, address potential mis-
conceptions about NLC’s relationship with the covariance matrix,
and propose improvements for future work. Second, we identify
flaws in the empirical study design and offer recommendations for
the rigorous evaluation of DNN coverage criteria.

One major concern descends from their requirement R1, stating:
‘DNN coverage criterion should precisely describe the continuous out-
put of a neuron.’. The authors argue that most existing criteria fail
to satisfy R1 because they rely on thresholding, which artificially
divides the neuron output space and fails to capture its true shape.
While this claim is valid, we contend that by working without any
thresholding, NLC has turned into a non-monotonic, unbounded
coverage criterion, whose value may decrease as new tests are
added to a test suite and without any clearly defined maximum
value. Correspondingly, it cannot function as a reliable coverage
criterion. The authors partially recognised this issue and proposed
a fix, which involves updating coverage only when it increases.
However, this solution introduces a dependency on the order of
test case evaluation, as the same test case may or may not be taken
into account by NLC, depending on the sequence of evaluation.
We argue that monotonicity and order independence should be
intrinsic properties of the coverage criterion’s design. Furthermore,
we empirically validate our argument regarding order dependency,
demonstrating that it is a practically significant issue. Our exper-
iments reveal that NLC coverage can decrease by up to 10.42%
depending on the evaluation order.

In addition to our theoretical review of NLC, we critically analyse
the empirical study design, which significantly deviates from prior
work [17, 19, 24, 29]. Their approach establishes a ground truth
ordering of test suites, for instance, asserting that test suite 7; must
have higher coverage than another suite T, based on their posit that
Ti exhibits greater diversity than T,. This is used to evaluate and
compare coverage criteria in the absence of definitive ground truth
in the literature. We highlight substantial threats to the validity of
their study. This is primarily because the assumed ground truth
does not always hold, as coverage cannot be equated to diversity,
rendering their evaluation unreliable.

At the end of the paper, we revisit the critiques outlined ear-
lier, provide additional insights, and suggest potential solutions
to the issues identified in Yuan et al’s work, concluding with key
takeaways. In summary, our contributions are:

e An analysis of how NLC misses important properties of cov-
erage criteria. We examine the eight proposed requirements,
the preservation of covariance matrix properties, and the
proposed layer-wise aggregation.

o Identification of critical threats to the validity in their empir-
ical study design, particularly in establishing a ground truth
ordering of test suites.
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e Empirical validation of our arguments to substantiate our
claims.

e A comprehensive discussion, guiding an improved design
and evaluation of future DNN coverage criteria.

2 Background

In this section, we provide an overview of DNN coverage testing
and delve into the work by Yuan et al., which introduced NLC,
a novel coverage criterion designed to address the limitations of
existing metrics.

2.1 DNN Coverage Testing

DNN coverage testing evaluates the extent to which a DNN’s in-
ternal behaviour is exercised during testing. Various criteria have
been proposed, each targeting different aspects of DNN behaviour.
One class of criteria focuses on individual neurons. For instance,
Neuron Coverage (NC) [29] measures the proportion of neurons acti-
vated beyond a predefined threshold. More advanced methods, such
as k-Multisection Neuron Coverage (KMNC) [24], divide the output
range of each neuron into sections and track coverage based on
which sections are activated. Additional methods like Neuron Bound-
ary Coverage (NBC) and Strong Neuron Activation Coverage (SNAC)
focus on neurons with outputs outside expected ranges or exceed-
ing upper bounds, respectively, to identify extreme or anomalous
behaviours [24]. Another set of criteria examines groups of neurons
within layers. For example, Top-k Neuron Coverage (TKNC) [24]
identifies the top k neurons with the highest outputs in each layer.
Surprise Coverage (SC) [19, 20] compares neuron traces of test inputs
to those from training data, using distance metrics such as Maha-
lanobis distance to quantify differences (MDSC). Variants like LSC
and DSC employ alternative distance measures. Causal Coverage
(CC) [17] captures causal relationships between neurons through
statistical independence tests. LidSA [9] improves SC by estimating
the Local Intrinsic Dimensionality (LID) [12] of activation traces
from important neurons, identified via contribution propagation.
Two associated criteria, LidSA Surprise Coverage (LDSC) and Top-N
Surprise Coverage (TNSC), assess how well a test suite covers the
range of LidSA values. Input Domain Coverage (IDC) [6] introduces
a black-box approach to test adequacy by leveraging a Variational
Autoencoder (VAE) to map inputs into a latent feature space. Com-
binatorial Interaction Testing (CIT) is then applied in this space to
measure how well test inputs cover combinations of latent features.
IDC shows a strong correlation with fault detection and comple-
ments white-box criteria by capturing input diversity. Neuron Path
Coverage (NPC) [35] represents the internal decision structure of
the DNN on given inputs, analogous to control flow in traditional
software. Our reference work, NLC [38], stands out as a unique cri-
terion by addressing specific design requirements for DNN testing.
It is the only criterion that fulfils all these requirements, taking into
account the correlation, distribution, and density of each layer’s
outputs in a DNN, while also supporting various optimisations. We
provide a detailed explanation of NLC in the subsequent section.

2.2 NLC by Yuan et al. [38]

In this section, we introduce the requirements proposed by Yuan et
al. and discuss how NLC is designed to satisfy these requirements.
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2.2.1 Suggested Requirements. To address the limitations of ex-
isting neuron coverage criteria, Yuan et al. proposed eight design
requirements for DNN coverage criteria. Below, we introduce and
explain each requirement in detail.

R1: DNN coverage should precisely describe the continuous
output of a neuron. DNNs process inputs through continuous,
non-linear transformations, and the outputs of neurons are continu-
ous values. Existing coverage criteria often discretise these outputs
(e.g., by applying thresholds) to simplify analysis. However, this
approach is reductive, as it artificially partitions the output space
and disregards the continuous nature of neuron activations. R1 em-
phasises that a DNN coverage criterion should accurately describe
the continuous output of a neuron, ensuring that the metric reflects
the true behaviour of the DNN.

R2: It is preferable to measure DNN coverage by character-
ising correlations of neurons. Neurons within a DNN layer are
interconnected, meaning their outputs are correlated and collec-
tively contribute to processing input features. Existing criteria often
treat neurons as independent units, which is inaccurate because
the behaviour of one neuron can influence others. R2 highlights
the importance of measuring DNN coverage by characterising the
correlations between neurons.

R3: DNN coverage should analyse how outputs of neurons
in a layer are distributed. DNNs operate by approximating com-
plex distributions through their hierarchical layers, with each layer
responsible for extracting and refining features at varying levels of
abstraction. R3 posits that a DNN coverage criterion should analyse
the distribution of neuron outputs within each layer.

R4: DNN coverage should consider density of neuron output
distributions. The outputs of neurons often cluster within the
output space, with regions of varying density. High-density regions
typically correspond to common or expected behaviours, while
low-density regions may signify rare or anomalous patterns. R4
mandates that a DNN coverage criterion consider the density of
neuron output distributions.

R5: DNN coverage should support incorporating prior knowl-
edge extracted from training data. Training data reflects how
a DNN learns to approximate distributions, and this knowledge
can be leveraged to refine coverage metrics. R5 emphasises that a
DNN coverage criterion should support the incorporation of prior
knowledge extracted from training data.

R6: DNN coverage should support matrix-form computation
to be optimisable by modern DL frameworks and hardware.
Modern deep learning frameworks, such as PyTorch and Tensor-
Flow, along with hardware accelerators like GPUs, are optimised
for matrix operations. R6 stipulates that a DNN coverage criterion
should support matrix-form computation to capitalise on these
optimisations for large-scale DNNs.

R7: DNN coverage should feature efficient incremental up-
date. In practice, test inputs are often generated and evaluated
incrementally, such as in fuzz testing or online testing scenarios. R7
requires that a DNN coverage criterion feature efficient incremental
updates, without requiring a full recomputation of the metric.

R8: DNN coverage is desirable to be hyperparameter free.
Many existing coverage criteria rely on hyperparameters, such as
thresholds or bucket sizes, which must be manually configured. R8
advocates for coverage criteria to be hyperparameter-free.
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The eight requirements designed by Yuan et al. provide an ap-
pealing framework for the design of DNN coverage criteria. By
addressing these requirements, NLC emerges as a promising metric
that captures the continuous, interdependent, and distributional
nature of DNN behaviours. Its ability to incorporate prior knowl-
edge, support efficient computation, and operate without hyper-
parameters makes it potentially a valuable tool for evaluating and
enhancing the quality of DNN test suites.

2.2.2  Design of DNN Coverage Criterion. Neural Coverage (NLC)
is a layer-wise and distribution-aware metric designed to evaluate
the quality of test suites for DNNs. Here, we provide a detailed
technical explanation of how NLC is calculated. Neuron outputs are
represented as continuous numbers, and NLC directly operates on
these outputs in their continuous form without any discretisation.
For a single neuron n, NLC quantifies the divergence of its output
using variance, which measures the spread of the neuron’s outputs.
The variance 62 for neuron n is defined as:

o5 = E[(on ~ E[on])*] )
where o0, represents the output of neuron n, and E[o,] is the ex-
pected value (mean) of the neuron’s output. A higher variance (i.e.,
higher NLC) indicates that the neuron’s outputs are more spread
out, suggesting greater activation diversity.

In practice, DNNs typically consist of multiple neurons, and
neurons within a layer are interconnected, meaning their outputs
are correlated and jointly process input features. To capture this
correlation, NLC uses covariance to measure the joint variability of
neuron outputs. For two neurons ng and no, the covariance Sni,ny
is computed as:

Snyny = El(on, — Elon,])(0n, — E[on,])] 2
The covariance matrix ¥ for a layer with m neurons is then
constructed as:

2
On, Sny,ny Tt Snpng
Sna.ny On, ©t Sngng
T=| . } . . ®3)
.. o2
Snm,ni  Shp,ng Nm

This covariance matrix not only captures the divergence of in-
dividual neurons and their correlations but also encapsulates the
shape of the distribution. As a result, NLC leverages the values
in the covariance matrix to compute coverage. For a DNN with
multiple layers, NLC calculates the coverage for each layer indepen-
dently and then aggregates the results. The coverage for a single
layer I with m; neurons is computed as:

my [(my
1 1
NLC; = ——||I2 = — . 4
1= e I mlxmljz_;(;|gn,,n,|) (@

where ¥; is the covariance matrix for layer [, and ||Z;||1 is the L1
norm of the matrix. The overall NLC for the entire DNN is the sum
of the coverage values across all layers:

NLC = Z NLC, (5)
1
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A higher NLC value is expected to indicate a more diverse and
comprehensive test suite, as it reflects a greater exploration of the
neuron output distributions across all layers of the DNN.

3 Critical Review of NLC

In this section, we elaborate on our concerns. While our critique
focuses on NLC, the discussion aims to offer broader insights into
the design of any novel DNN coverage criteria.

3.1 Does NLC Qualify as a Coverage Criterion?

A fundamental property of any test coverage criterion is that cover-
age should be non-decreasing as new tests are executed (monotonic-
ity), because the coverage achieved by previous test cases cannot
be eliminated by newly added tests. This means that any cover-
age function f should satisfy the following property: for all test
suites X and Y such that X C Y, it holds that f(X) < f(Y). This
ensures that even redundant or ineffective tests do not reduce the
previously reached coverage value. However, the mathematical for-
mulation of NLC (as defined in Equations 4 & 5) can decrease when
new tests are executed. Consider, for instance, a test suite with two
test inputs associated with the activation values +10 and —10 of
a given neuron n. If we extend this test suite with two more test
inputs that trigger the activation values +5 and —5, the variance o,
of the neuron’s output drops from 100 to 62.5. However, the new
test suite is not less effective than the initial one: it might even be
more effective if the inputs with activations +5 and —5 represent
interesting boundary cases.

To address this issue, Yuan et al. proposed updating the coverage
value only when it increases, effectively discarding inputs that do
not contribute positively to coverage. In our previous example, the
two inputs with activations +5 and —5 would be ignored. While
this might look like a pragmatic adjustment to align NLC with the
expected behaviour of a coverage criterion, we argue that it is a
problematic solution. This approach can result in order-dependent
NLC values, where the final coverage depends on the order in which
tests are evaluated, even when the same set of tests is considered®
(see Section 5.2 for our empirical validation). In our running exam-
ple, if the two tests with activations +5 and —5 were considered
first, they would be retained, as they increase NLC from 0 (no tests)
to 25. Subsequently, the tests with activations +10 and —10 would
also be retained, further increasing NLC from 25 to 62.5. However,
if the order is reversed, only the tests with activations +10 and —10
would be retained, resulting in NLC = 100, which differs by 37.5
from the previous NLC value (the former being hence 37.5% lower
than the latter).

We remark that the discrete rules (e.g., thresholding) introduced
in other DNN coverage criteria (e.g., Neuron Coverage) inherently
solve this problem, as discrete rules ensure monotonicity by design.
While discrete coverage spaces are common in software testing, we
acknowledge that continuous coverage criteria guaranteeing mono-
tonicity and order independence might be possible (e.g., through
volume-based measures), though they may present computational
challenges and lack intuitive percentage-based interpretations.

3Note that similar issues can arise in conventional coverage criteria if flaky tests are
present [28]. However, in such cases, the problem lies not with the coverage criterion
itself but rather with the nature of the tests.
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NLC’s mathematical formulation allows its value to decrease
when additional tests are executed, violating the monotonicity
expected for a coverage criterion. While the authors proposed
updating NLC only when it increases, this solution is problematic,
as it introduces order-dependent results, further undermining
the validity of NLC as a coverage criterion.

The computation of NLC involves summing the absolute val-
ues of covariances within the covariance matrix of a layer in a
DNN under test. From this, it is evident that NLC is inherently
non-negative, with no upper bound. This unbounded nature means
that NLC can assume arbitrarily large positive values, which raises
further questions about its suitability as a coverage criterion. Am-
mann & Offutt [2] provided a foundational definition of coverage
criterion for conventional software:

Definition 1 (Coverage Criterion). A coverage criterion is a rule
or collection of rules that impose specific test requirements on a test
set. These rules must describe the test requirements in a complete and
unambiguous manner.

This definition implies that a coverage criterion serves as a mea-
surable benchmark, enabling developers to set clear testing goals
and determine when sufficient testing has been achieved. It also
inherently requires properties such as monotonicity and order in-
dependence to reliably track testing progress. For instance, in re-
gression testing, coverage should not decrease when new tests are
added to the test suite. Furthermore, NLC’s unbounded nature pre-
cludes its conversion into a percentage of covered targets, making
it incompatible with the traditional notion of a coverage criterion.
Consequently, NLC cannot easily be used to define a finite set of
test goals and does not naturally lead to a clear stopping criterion
for testing.

Yuan et al. discussed this point in their work, arguing that DNN
coverages are not directly comparable to traditional software cov-
erages and suggesting that developers should focus on maximising
NLC values through test inputs. However, this does not provide
any clear guidance on when to stop testing, making NLC impracti-
cal for real-world DNN development.* We agree that NLC would
retain utility in guiding automated test generation tools, where the
objective is to maximise NLC values (apart from the above men-
tioned monotonicity problem). However, as Kaufman et al. [18]
have highlighted — drawing a distinction between mutation test-
ing and mutation analysis — this application aligns more closely
with research-oriented tasks (akin to mutation analysis, rather than
mutation testing [18]). Specifically, NLC may be better suited for
comparing the effectiveness of different test sets (again, modulo
the lack of monotonicity) rather than serving as a practical tool for
developers to interpret and improve test coverage.

The failure of NLC to qualify as an easily interpretable and re-
liable coverage criterion can be attributed to its design choices.
Specifically, NLC avoids discretising the neuron output space (e.g.,

“1t is worth noting that even in conventional coverage criteria, achieving full adequacy
(e.g., 100% coverage) is not practical [21, 26]. This is due to factors such as unsatisfiable
test goals or goals not worth pursuing. However, in practice, developers can still aim
for reasonable coverage levels, focusing on achievable and meaningful targets [30].
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through thresholding) to satisfy two of its requirements: R1 (pre-
cisely describing continuous neuron outputs) and R8 (being hyper-
parameter-free). While these design decisions confer significant
advantages, such as preserving the continuous nature of neuron
activations and eliminating the need for manual parameter tuning,
they come at the cost of sacrificing NLC’s ability to function as a
measure of the proportion of test goals that have been achieved.

This investigation raises a broader question: Can a DNN coverage
criterion operate in a continuous way, without hyperparameters and
without defining bounds for a discrete set of regions to be covered?
This challenge distinguishes DNN testing from traditional software
testing, where coverage criteria (e.g., statement or branch coverage)
operate on discrete, well-defined units. In DNNs, however, the
absence of such discretisable units complicates the development of
coverage criteria that satisfy both R1 and R8.

While future work might develop monotonic and order-
independent variants of NLC (potentially through continuous
measures like volume coverage), the current formulation remains
limited as a practical test goal for development due to its design
choices to satisfy R1 and R8. This underscores the broader chal-
lenge of defining DNN coverage criteria in continuous spaces
without relying on hyperparameters and discrete regions, while
maintaining properties essential for practical use.

3.2 Does NLC Reflect the Properties of a
Covariance Matrix and Layer-Wise
Information?

Beyond our arguments over whether NLC qualifies as a valid cov-
erage criterion, this section critically examines the mathematical
design of NLC in its attempt to satisfy R2 (characterising corre-
lations of neurons). We highlight the discrepancies between the
properties of a covariance matrix and those of NLC. These discrep-
ancies were conflated in the work by Yuan et al. We explain why
we believe their design choices are problematic, how the properties
were misinterpreted (Section 3.2.1), and propose potential improve-
ments (Section 3.2.2). Additionally, we address issues arising from
NLC’s summation across multiple layers, which we argue leads to
unintended and misleading results (Section 3.2.3).

3.2.1 Loss of Covariance Matrix Properties in NLC. As outlined in
Section 2.2.2, a covariance matrix encapsulates critical data prop-
erties such as divergence, correlation, and shape. However, NLC’s
formulation (Equation 4) fails to preserve these properties due to
its reliance on the L1-norm. Yuan et al. sought to derive a scalar
measure representing multiple neurons’ multidimensional data, be-
ginning with single-neuron variance (Equation 1). To generalise
this to multiple neurons, they needed a measure of the variance of a
covariance matrix, which describes multi-dimensional data variabil-
ity. However, NLC simply sums the absolute values of all entries
of the covariance matrix, labelling this sum as the layer’s NLC.
This approach yields a value that is challenging to interpret and
lacks meaningful mathematical properties, as it merely combines
variances and covariances using summation. Importantly, while
a covariance matrix can represent data structure and shape, NLC
loses this capability, despite the authors’ intent.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Consider three neurons, ny, nz, and ns, and the following 3 X 3
covariance matrices:

4 1 0 4 0 2
>1=1{1 4 1 and X3=1|0 4 0
0 1 4 2 0 4

Both matrices share the same L1-norm but represent distinct
correlation structures. £; exhibits a sequential dependency, where
ni correlates with ny, and ny correlates with ns, but ny and n3 are
uncorrelated. This structure resembles a chain, where information
flows sequentially from one neuron to the next. Its eigenvalues (5.41,
2.59, 4) and eigenvectors reflect this pattern. In contrast, X5 displays
a direct correlation between n; and ns3, with ny being independent
of both. Unlike X1, where correlations are sequential, X3 shows a
pattern where n; and n3 are directly connected, while ny remains
uncorrelated with either. Its eigenvalues (2, 4, 6) and eigenvectors
highlight this pattern. This example illustrates the L1-norm’s inabil-
ity to capture structural nuances, as it cannot distinguish between
these two distinct correlation patterns.

Moreover, NLC’s handling of the covariance matrix (which is
symmetric) results in double-counting of non-diagonal covariances,
overemphasising their contribution compared to diagonal variances.
This oversight, not addressed by Yuan et al., highlights the need for
a revised scoring function that better retains the properties of the
covariance matrix, even if some information loss is unavoidable
when condensing it into a single scalar value.

NLC'’s reliance on the L1-norm fails to preserve important struc-
tural and relational properties of the covariance matrix, limiting
its interpretability and utility.

3.22  An Alternative Formulation Leveraging Intrinsic Properties of
the Covariance Matrix. To address the limitations of the L1-norm,
we propose a refined scoring function to summarise the covari-
ance matrix into a scalar that aligns more closely with the intrinsic
properties of the covariance matrix. Among the various potential
formulations, we argue that the determinant of the covariance ma-
trix is the most suitable choice. The determinant, defined as:

Det(Z) = l_[ Ai (6)

where A; represents the eigenvalues of ¥, quantifies the gener-
alised variance of the data. It encapsulates the volume of the data
distribution and is intrinsically linked to the Fisher Information
matrix, which measures the amount of information an observable
random variable carries about an unknown parameter [22, 34]. This
connection has made the determinant a widely adopted metric in
numerous prior studies [7, 10, 31].

The determinant offers several key advantages. First, it compre-
hensively captures both the scale and shape of the data distribution.
Second, it is inherently sensitive to correlations, as it depends on
the eigenvalues of the covariance matrix. Third, it avoids the double-
counting of covariances, eliminating the bias from the L1-norm.
However, it is important to note that the determinant is compu-
tationally more costly than the L1-norm, particularly for larger
matrices. Despite this drawback, its ability to preserve important
properties of the covariance matrix makes it a compelling choice.
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We acknowledge, however, that even with our proposed alter-
native measure using the determinant, NLC would still face the
same fundamental issues we have outlined. Nevertheless, compared
to NLC, this new formulation more effectively captures the data
distribution and the properties of a covariance matrix. Hence, we
deem it a promising direction of investigation, although it is not an
ultimate solution that improves all of NLC’s deficiencies.

Alternatively, other scoring functions, such as the trace or the
spectral norm (the largest eigenvalue of the covariance matrix), can
be considered. Each of these alternatives comes with distinct trade-
offs. The trace of the covariance matrix is computationally efficient
and directly measures the total variance. However, it ignores off-
diagonal elements (covariances), losing critical information about
correlations and failing to capture the shape or orientation of the
data distribution. The spectral norm, which reflects the dominant
variance direction, provides insight into the scale of the data along
its principal axis. Yet, it neglects contributions from other eigenval-
ues, resulting in a loss of information about the overall shape of the
distribution and has a reduced sensitivity to correlations compared
to the determinant. While the trace and spectral norm offer compu-
tational simplicity, they fail to capture the full structural nuances of
the covariance matrix. In contrast, the determinant provides a more
comprehensive representation of the data distribution, making it
the preferred choice despite its higher computational cost.

We propose the determinant of the covariance matrix as an im-
proved scoring function over NLC. While computationally in-
tensive, it addresses the limitations of the L1-norm and it out-
performs the alternatives in preserving the structural covariance
properties.

3.23 Loss of Layer-Wise Information in NLC. As the title of Yuan
et al’s paper suggests, NLC is a layer-wise criterion, meaning that
it is designed to capture layer-wise information of a DNN. Here,
we investigate whether this layer-wise information is effectively
preserved in NLC.

The final NLC aggregates values across all layers of a DNN (see
Equation 5). As a hyperparameter-free metric (satisfying R8), NLC
eliminates the need to select a specific layer for coverage calcula-
tion. This design aligns with R3, which states that DNN coverage
should analyse the distribution of neuron outputs within each layer,
as NLC incorporates per-layer neuron distribution. While aggre-
gating values across all layers may seem intuitive, we argue that
this approach (summation) overlooks the variability in covariance
matrix values between layers. This can result in a single layer dis-
proportionately influencing the overall NLC value, potentially due
to differences in the activation function’s output ranges or the pres-
ence of layers with significantly higher neuron activations. Such
dominance can mask the contributions of other layers, leading to
a distorted representation. We empirically validate this claim in
Section 5.3, where we show a pronounced imbalance in layer con-
tributions, with one layer dominating the final coverage value and
rendering the NLC contributions of other layers negligible. Given
this problem, we cannot deem NLC as a truly layer-wise metric.
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Table 1: Test Suites for the Diversity Study

Id Description Size

test Original test set comprising real-world images. 10,000

A subset of 100 images from test, each perturbed
testy;  with white noise, subsequently scaled to match |test|
the cardinality of test.

A subset of 100 images from test, each perturbed
testyxio with white noise, subsequently scaled to
ten times the cardinality of test.

10 X |test|

Ground Truth®: test > testxig > testx;
* This ground truth ordering was established by Yuan et al. based on the diversity of
the test suites, implying a corresponding ordering for coverage values.

Summing NLC across layers runs into the risk of specific layers
dominating the final value, masking other layers’ contributions.

4 Critical Review of the Empirical Study

In addition to proposing a novel formulation of a new DNN cov-
erage criterion, Yuan et al. include experimental results obtained
by applying a unique, ad-hoc empirical study design. This section
outlines their study and provides a critical review, highlighting
potential flaws and misleading aspects of their empirical approach.

The empirical study of Yuan et al. consists of two main compo-
nents: (1) Assessing Test Suite Quality and (2) Guiding Input Mutation
in DNN Testing. The goal of these components is to compare the
performance of their NLC criterion to other coverage criteria in two
key areas: serving as a better proxy for test suite quality and func-
tioning as a more effective guide for input generation. While the
second study, Guiding Input Mutation in DNN Testing, is a straight-
forward and properly-designed contribution, we focus on the first
study, Assessing Test Suite Quality, as it raises significant concerns.
This first study is further divided into two sub-studies: (1) Diversity
of Test Suites and (2) Fault-Revealing Capability of Test Suites. In
the following subsections, we will introduce and critically evaluate
these two sub-studies.

4.1 Threats to Validity of Evaluation Based on
Test Diversity

To compare coverage criteria, Yuan et al. attempted to establish
a ground truth for test suite ordering. They argued that absolute
coverage values (e.g., NLC = 0.7 vs. NC = 0.5) cannot be meaningfully
compared across different criteria, as each criterion operates on a
distinct scale and interpretation of coverage. To address this, they
defined a relative order of coverage values as the ground truth,
asserting that a test suite with higher diversity should yield higher
coverage values under any effective criterion. The goal of setting
this ground truth was to determine which coverage criterion aligns
with this predefined order, which is based on the diversity of test
suites.

Table 1 shows three test suites they created: the original test set
(test), the X1 scheme (testxi), and the X10 scheme (testxig). In
the X1 scheme, 100 images are randomly selected from the test data,
and white noise within the range [-0.1,0.1] is added to generate
mutated images, ensuring the total number of these images matches
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the size of the original test data. The x10 scheme follows the same
procedure but produces ten times the number of mutated images.
The authors posit the relative order test > testyxjg > testyx; as
the ground truth, meaning that the coverage of test should exceed
that of testx1o and testy; and coverage of testyio should exceed
that of testyj. They reason that test contains over 10,000 diverse
and meaningful real-world samples, while testyx; and testyig are
mostly dummies as they are generated with white noise and based
on only 100 data samples. This design, however, raises questions
about its validity and potential to mislead.

Diversity in a test suite refers to the extent to which tests in
a test set can be differentiated from one another. In traditional
software testing, this differentiation ensures that the tests cover
a broader range of the program under test. However, it is impor-
tant to note that while diversity can be expected to correlate with
higher coverage, this relationship is not absolute. For example, a
test suite with high diversity might achieve low coverage if it fo-
cuses predominantly on corner cases, leaving many nominal cases
untested.

Diversity can be measured in various ways. For instance, Feldt
et al. [8] proposed the Test Set Diameter (TSMd), which calculates
the distances between tests using Normalized Compression Dis-
tance (NCD) [5]. When it comes to DNN testing, we argue that
diversity can also be computed in multiple ways. For instance, in
an image classification problem, one approach is to calculate the
Euclidean distance between test images, which partially aligns with
how humans perceive differences between images. Another option
is to measure the Euclidean distance in some latent space (e.g., an
auto-encoder’s latent space), where changes in values correspond to
semantic changes in the image. Yet another approach is to calculate
the distances between neuron outputs when the test images are fed
into the DNN. This method aligns with the DNN’s internal perspec-
tive (i.e., its learned feature space) but may not align with human
perception or semantic features of the image. For example, two
images that produce significantly different neuron outputs might
appear very similar to the human eye (e.g., adversarial examples),
and vice versa.

This raises an important question: How can we say that one test
set is more diverse than another? This is a challenging question to
answer, as it depends on the perspective adopted by the user. Turn-
ing back to the three test suites with this question in mind, test,
testyxi, and testxio: Can we definitively determine which suite has
higher diversity? The answer depends entirely on the perspective
we adopt. While testy; or testxio may appear to consist mostly
of duplicates derived from 100 images, these perturbed inputs can
be perceived as new and diverse from the perspective of the DNN.
This challenges the assumption that test is inherently more diverse
than testy; or testyxio. Consequently, the proposed ground truth
based on a relative order of diversity may not hold universally and
could be misleading. Yuan et al. compare NLC with other methods
using this ground truth, which introduces a significant threat to the
validity of the comparison. In support of our argument, we present
a counterexample in Section 5.4.2, using a diversity measure based
on spectral analysis of neuron activations [15] and clustering-based
methods [39].
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Table 2: Test Suites for Fault Revealing Study

Id Description

Test  Original test set with 10,000 real-world images.

PGD PGD adversarial examples that deceive the model.

CW  CW adversarial examples that deceive the model.

Adversarially perturbed inputs created by adding CW or PGD
perturbations to 1,000 randomly selected test inputs, while
preserving their original predictions (thus not true adversarial
examples).

AP

Ground Truth*: PGD > Test, CW > Test, Test > AP > 0

* This ground truth ordering was established by Yuan et al. based on the fault-
revealing capability of the test suites, implying a corresponding ordering for
coverage values.

The proposed ground truth for test suite diversity may not hold,
as test suites generated by perturbing a small subset of images
can still appear diverse to a DNN.

4.2 Threats to Validity of Evaluation Based on
Fault Revealing Capability

Faults in DNN testing can take on various meanings. They may
include adversarial examples, inputs causing mispredictions or mis-
behaviours, coding errors introduced by developers, or incorrectly
configured hyperparameters of the model [13]. Despite this variety,
most studies on DNN coverage testing evaluate their criteria based
on how effectively they respond to adversarial examples [19, 24].
These adversarial examples are generated using white-box attack
methods, which leverage gradient information to produce changes
that are imperceptible to humans yet capable of altering the model’s
predictions.’ Yuan et al. also treated adversarial examples as faults
and evaluated NLC using them. They focused on two well-known
adversarial attack methods, as outlined in Table 2: Projected Gra-
dient Descent (PGD) [25] and Carlini & Wagner (CW) [4]. Using
these methods, they generated adversarial examples from either a
training set or a test set with a high attack success rate, resulting
in two sets named PGD and CW. They established a ground truth
stating that PGD > Test and CW > Test, meaning that the coverage
of PGD and CW should exceed that of the original test set.
However, this formulation of the ground truth is questionable:
Should a test set that primarily covers edge (e.g., adversarial) cases
inherently have higher coverage than a test set that focuses on in-
distribution data? We argue that coverage is not synonymous with
fault-revealing capability. A test set with high fault-revealing capa-
bility might actually exhibit lower coverage if it focuses on edge
cases rather than broadly covering the input space. In traditional
software testing, a single, fault-revealing test has typically lower
coverage than a comprehensive test suite that covers all nominal
cases, in which no error is triggered. In fact, focusing on adversarial
examples only might leave the DNN exposed to failures associ-
ated with boundary or tricky in-distribution inputs that cannot be

Note that adversarial examples differ from white noise used in the diversity study in
Section 4.1. While white noise is random and untargeted, adversarial examples are
carefully crafted to mislead the model.
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generated by any adversarial method. From a functional testing
perspective (as compared to security testing), it is equally or even
more important to ensure that the DNN behaves correctly in the
vast majority of in-distribution and boundary cases, rather than
considering just adversary manipulations. This reasoning can also
be extended to the diversity study discussed in Section 4.1: a highly
diverse test set might have relatively low coverage, if it focuses
only on corner cases, leaving most nominal cases untested.

Coverage # fault-revealing capability: a test set consisting only of
edge-case tests may have high fault detection, but low coverage.
A good test set should include both nominal cases, boundary
cases, corner cases and adversarial cases, not just some of these
categories.

In their study, Yuan et al. found that many existing coverage
criteria satisfy their ordering of PGD > Test and CW > Test. To
further investigate this aspect, they introduced a new test set called
AP (see Table 2), created by adding adversarial perturbations (CW
or PGD) to 1,000 randomly selected inputs from the test set (which
contains 10,000 inputs) without changing their predictions. Thus,
AP is not adversarial. They established a ground truth ordering of
Test > AP > 0, meaning that coverage of Test should exceed that
of AP. They reason that Test is ten times larger than AP and AP
does not cause mispredictions, and showed that only NLC satisfied
this ordering, while other criteria failed, claiming those criteria did
not accurately reflect fault-revealing capability but were instead
sensitive to the dissimilarity induced by adversarial perturbations,
even though Test is larger than AP.

However, this ground truth ordering is also problematic. First,
as previously argued, coverage is not equivalent to fault-revealing
capability. Second, even though AP does not cause mispredictions,
it does push the inputs closer to the decision boundaries of the
DNN through adversarial perturbations, bringing them near to the
edge cases. Therefore, we argue that such adversarial perturbations
should be viewed positively, as they contribute to DNN testing in
areas near or inside the in-distribution data, where regressions may
occur when the DNN evolves (e.g., through successive training on
new data). To support our argument, we present a counterexample
in Section 5.4.1, where we use DNN mutants [14] as proxies for real
faults and compare the fault-detection effectiveness of Test and AP
based on their mutant-killing capabilities.

Yuan et al. introduced AP, a test set with adversarial perturba-
tions that do not cause mispredictions, and claim that this is (by
construction) a weak test set. We instead argue that AP perturba-
tions are not necessarily useless, as they bring the inputs closer
to the decision boundaries, where regressions may occur in the
future.

5 Empirical Validation of Our Arguments

Our primary goal in this section is to perform a targeted study on the
theoretical foundations and empirical evaluation of NLC, as outlined
in Section 3, rather than to replicate all extensive experiments
conducted by Yuan et al.
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5.1 Experimental Setup

We utilise the same set of models and datasets for classification
as Yuan et al.: two datasets, CIFAR-10 and ImageNet, and three
DNN architectures with their corresponding pre-trained weights,
VGG16_BN, ResNet50, and MobileNet_V2, all implemented in Py-
Torch. For further details on these models and datasets, consult
Yuan et al. [38].

Table 3: Instability of NLC under Data Shuffling

Dataset ‘ Shuffled? ‘ Model ‘ Std ‘ SEM ‘ Max % Drop
No ResNet50 0.0 - 0.0
No VGG16_BN 0.0 - 0.0

CIFAR-10 No MobileNet V2 0.0 - 0.0
Yes ResNet50 0.0068 | 0.0015 1.58%
Yes VGG16_BN 0.0304 | 0.0068 4.22%
Yes MobileNet_V2 | 0.0044 | 0.0010 0.84%
No ResNet50 0.0 - 0.0
No VGG16_BN 0.0 - 0.0
No MobileNet_V2 0.0 - 0.0

ImageNet
Yes ResNet50 0.0681 | 0.0152 7.46%
Yes VGG16_BN 0.1266 | 0.0283 10.42%
Yes MobileNet_V2 | 0.1284 | 0.0287 8.74%

5.2 Order-Dependency of NLC

As highlighted in Section 3.1, we hypothesise that NLC can be
sensitive to the order in which test data is fed into the model. To
test this, we first compute NLC by feeding the test set into the model
without any shuffling, establishing a baseline for comparison. Next,
we shuffle the test set, randomising the order of data points, and
compute NLC again. This process is repeated 20 times to assess
the variability in NLC values. Finally, we measure the standard
deviation of the NLC values across the 20 runs to quantify the
impact of data order on NLC.

The results are summarised in Table 3. The column ‘Shuffled?’
indicates whether the test set was shuffled, while ‘Std’ reports
the standard deviation of the NLC values across the 20 runs. The
‘SEM’ column shows the standard error of the mean, quantifying
the precision of the mean estimate. The ‘Max % Drop’ column
complements the standard deviation by quantifying the worst-case
reduction in NLC values due to input order, calculated as %‘mi" X
100, where max and min are the maximum and minimum NLC
values observed across the 20 runs, respectively.

When the test set is not shuffled, the NLC values remain con-
sistent, with a standard deviation of 0.0 across all models and
datasets. In contrast, shuffling the test set introduces variability
in the NLC values, as evidenced by non-zero standard deviations.
For the CIFAR-10 dataset, the max % drop ranges from 0.84% to
4.22%, while for the more complex ImageNet dataset, it increases
significantly, ranging from 7.46% to 10.42%.

To further validate the reliability of using 20 runs, we computed
the Standard Error of the Mean (SEM) and relative SEM (i.e., SEM
divided by the sample mean) for the NLC values. SEM measures the
precision of the estimated mean. A low relative SEM (typically be-
low 5 to 10%) indicates that the mean is a stable estimate. For CIFAR-
10, the SEM (and relative SEM) were 0.0015 (0.08%), 0.0068 (0.24%),
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Figure 1: Visualisation of layer contributions in a log scale
of ResNet50 on ImageNet

and 0.0010 (0.06%) for ResNet50, VGG16_BN, and MobileNet_V2,
respectively. Similar trends were observed for ImageNet. These
results suggest that 20 repetitions provide a sufficiently accurate
and stable estimate of the metrics of interest.

These findings confirm that NLC is indeed sensitive to the order
of the inputs. We attribute this behaviour to the design of NLC,
which updates its coverage value only when new test inputs in-
crease the coverage, discarding those that do not. This design choice,
while intended to enforce monotonicity, inadvertently introduces
non-determinism into the coverage metric. We argue that such
non-determinism is problematic, as it undermines the reliability of
NLC as a consistent measure of test coverage, even in the absence
of flaky tests.

5.3 Layer Aggregation of NLC

As discussed in Section 3.2.3, to empirically validate our hypoth-
esis that NLC loses layer-wise information due to its aggregation
mechanism, we analyse the contributions of individual layers to
the final NLC value.

Figure 1 illustrates the layer-wise contributions to the final NLC
value for the ImageNet dataset with ResNet50.° The x-axis uses a
logarithmic scale, and each bar is annotated with the percentage
contribution of the corresponding layer. The y-axis represents the
layers, ordered from the deepest (top) to the shallowest (bottom).
The results reveal a significant imbalance in layer contributions,
with the last layer consistently dominating the final NLC value.
Specifically, the last layer contributes over 89% of the total NLC
value in all cases, rendering the contributions of the remaining
layers negligible. This pattern is consistent across all models and
datasets.

These findings substantiate our argument that NLC fails to
preserve layer-wise information effectively. By aggregating val-
ues across all layers, NLC obscures the variability in covariance

SFor brevity, we report full results in our artefact [1] as they exhibit similar trends.
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matrix values between layers, resulting in a distorted and non-
representative measure of coverage. This undermines the claim of
NLC being a layer-wise metric, as it cannot reliably capture the
distinct behaviours and contributions of individual layers within a
DNN. Consequently, we conclude that while NLC simplifies cov-
erage calculation by eliminating the need for layer selection, it
sacrifices critical layer-specific insights, limiting its effectiveness
as a comprehensive coverage criterion.

One might argue that this imbalance is not problematic, as it
naturally reflects the different variances in neuron outputs across
layers. Additionally, the unintentional focus on the deepest layer
could be seen as justified, given that deeper layers are known to
encode more abstract and meaningful features [3]. This reasoning
aligns with previous work that, when requiring the choice of a layer,
often defaults to the deepest layer as the target [19]. However, we
contend that Yuan et al. did not aim for this outcome; rather, their
goal was to incorporate all layer-wise information into a single
coverage metric. Unfortunately, this incorporation did not achieve
the desired effect. We further explore potential resolutions to this
issue in Section 6.5.

5.4 Counterexamples to the Proposed Ground
Truth Ordering

While our critique focuses on logical inconsistencies in how Yuan
et al. define ground truth ordering based on test suite diversity and
fault-revealing capability, to further empirically validate our claims,
we conduct three preliminary experiments. Our goal is to provide
counterexamples to their proposed ground truth ordering.

5.4.1 Fault-Revealing Capability (Test > AP). To illustrate a case
that violates the assumed ordering based on fault-revealing ca-
pability (i.e., Test > AP), we employed DNN mutants generated
by DeepCrime [14] as proxies for real faults. Using the CIFAR-10
dataset, we generated a total of 101 mutants and created an adver-
sarially perturbed set, AP, by applying adversarial perturbations
to the original test set (Test) while preserving the original predic-
tions. Our mutation analysis revealed that Test killed 44 mutants,
whereas AP killed 46 mutants, directly contradicting the proposed
ordering. This counterexample supports our claim that adversarial
perturbations push inputs closer to the decision boundaries even
when prediction-preserving, thereby enhancing their potential to
uncover faults.

5.4.2 Test Diversity (test > testyi). Next, we address the as-
sumed ground truth ordering based on test diversity (i.e., test >
testyi). Although Yuan et al. did not formally define diversity,
they constructed testyx by applying white noise to 100 randomly
sampled test inputs, scaling it to match the size of the original test
set, and treating this dummy set as strictly less diverse. To chal-
lenge this, we used a spectral analysis to quantify diversity, which
captures DNN behaviour through histograms of neuron activation
values [15]. On CIFAR-10, we measured the Jensen-Shannon (JS)
divergence between averaged activation histograms of different
original test sets and dummy sets, repeated over 20 independent
model re-trainings. To get the possibility of choosing 100 diverse
samples, we apply the K-Means clustering algorithm to the full test
set’s activation spectrums with K set to 100. Then, for each of 100
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clusters, we choose 1 data point closest to its centroid. The result-
ing subset of 100 samples exhibited a JS divergence of 2.18 x 107>
from the full set. A dummy set built from these ‘centroid’ samples
showed a JS divergence of 7.95 X 1075, indicating it retained most
of the original diversity. In contrast, dummy sets based on 100
samples from a single cluster yielded a much higher divergence
(1.14 X 1072). Random sampling also retained strong diversity, aver-
aging 5.87 X 107 in JS divergence. These results demonstrate that,
depending on the selection strategy, dummy sets do not have to be
less diverse.

We further evaluated test diversity using the clustering-based
strategy proposed by Zohdinasab et al. [39]. Their approach projects
inputs into a lower-dimensional latent space, applies clustering, and
measures how well a test set covers the resulting clusters. Applying
this method to the CIFAR-10 test set yielded an optimal cluster count
of 40. Selecting one sample per cluster led to a 40-input subset that
effectively represented the diversity of the full test set under this
metric. This demonstrates that even small, carefully constructed
subsets can adequately reflect global diversity.

6 Discussion and Implications

This section discusses our findings, revisits DNN coverage criteria,
explores their practical use, examines DNN faults, highlights com-
parison challenges, and summarises key insights from our review.

6.1 Revisiting the Analysis of Prior DNN
Coverage Criteria

Based on Yuan et al’s analysis of existing DNN coverage criteria,
no criteria other than NLC satisfy all eight design requirements,
although NLC ultimately fails to qualify as a coverage criterion
according to our analysis. Upon examining other criteria, we found
that none have similarly fallen short in the same manner as NLC.
A related concept to NLC would be Surprise Adequacy (SA) [19],
which, like NLC, operates with unbounded values and correspond-
ingly is not classified as a coverage criterion. To transform SA into
a coverage criterion called Surprise Coverage (SC), Kim et al. [19]
introduced lower and upper bounds to partition the continuous
space into discrete buckets, which then serve as test requirements
to be covered. Regarding experimental designs to evaluate DNN
coverage criteria, we found that most studies have focused on their
ability to expose faults or on their utility in guiding test generation
tools. The evaluation approach proposed by Yuan et al. with an
ad-hoc ground truth ordering is unique, but also problematic, as
evidenced by our analysis.

6.2 Practical Applicability of DNN Coverage
Criteria

We previously mentioned that achieving full adequacy (e.g., 100%
coverage) is impractical, even in traditional software testing due
to factors such as unsatisfiable or low-priority test goals [21, 26].
In practice, developers must prioritise and refine test objectives to
focus on meaningful and achievable coverage targets [30]. This is
facilitated by various heuristics and reduction techniques, such as
mutant reduction or selectively testing critical functions and meth-
ods. When it comes to DNN coverage testing, a similar strategy can
be applied by focusing on specific neurons or layers, responsible for
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faulty behaviours [32, 33]. A key research challenge lies in balanc-
ing efficiency and comprehensiveness: leveraging targeted testing
techniques may expedite the process, but it is crucial to assess the
trade-offs involved in potentially sacrificing full DNN coverage.
Investigating these trade-offs could provide valuable insights into
optimising DNN coverage testing. Moreover, the notion of coverage
regions/targets is very natural and interpretable for developers. It
also automatically ensures monotonicity and order independence.
Hence, the introduction of a continuous criterion for DNN coverage
should not sacrifice such practically important properties.

6.3 A Broader Perspective on DNN Faults

To the best of our knowledge, existing DNN coverage testing works
have primarily focused on adversarial examples, with little to no
evaluation of other types of DNN faults, such as inputs that are not
adversarial but still cause mispredictions. We argue that this focus
is largely due to adversarial examples being introduced earlier than
other fault types and their widespread recognition as significant
threats to DNNs. However, as reported by Humbatova et al. [13],
developers perceive DNN faults more broadly, including mistakes
in PyTorch model code or improper model hyperparameters as
faults. DNN mutation testing techniques have explored this broader
spectrum of faults [14], demonstrating their effectiveness in testing
DNN models by artificially seeding faults that simulate common de-
veloper mistakes. DNN coverage criteria could be evaluated directly
for their ability to expose such artificially injected faults, providing
a more comprehensive assessment of their effectiveness.

6.4 Difficulties in Comparing Coverage Criteria

Comparing coverage criteria has been a challenge, both in tradi-
tional software testing and, more recently, in DNN testing. As noted
by Ammann & Offutt [2], one common theoretical approach to com-
paring criteria is through subsumption relationships. Specifically,
criterion Cj is said to subsume C if every test set that satisfies
C; also satisfies C2. While this provides a foundational framework
for comparison, it is not without limitations. For example, if C;
contains infeasible test requirements, conditions that cannot be sat-
isfied by any test case, a test suite meeting C; might inadvertently
skip satisfiable requirements of Co. Ammann & Offutt argue that, in
practice, infeasible requirements are rare, and when they do occur,
the corresponding requirements in Cy are often infeasible as well.
Although subsumption offers a useful theoretical framework for
comparison, it is in practice quite limited. In many cases, the two
criteria C1 and Cy will be incomparable, meaning that neither C;
subsumes Cy nor vice versa. For instance, in traditional software
testing, coverage and mutation criteria are theoretically incompara-
ble (unless all coverage targets are assumed to be mutated), and the
same holds for branch vs. condition coverage (because flipping all
conditions does not necessarily flip all decisions). We expect that
most DNN coverage criteria cannot be compared for subsumption
theoretically and that empirical testing will often reveal them to be
incomparable (i.e., neither subsumes the other).

Moreover, while intuition might suggest that a subsuming crite-
rion (C1) should detect more faults than the subsumed criterion (Cy),
there is no theoretical basis to guarantee this, and empirical stud-
ies have yet to provide conclusive evidence. Therefore, we believe
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the only viable alternative for comparing DNN coverage criteria is
their evaluation on a variety of diverse fault types, ideally including
real faults that developers encountered when training and evolving
DNNs [13]. A comprehensive benchmark of real DNN faults is still
missing [16], but it would be extremely beneficial to the field. In
the absence of such a benchmark, artificial faults injected by DNN
mutation tools remain a viable alternative [14].

6.5 Key Takeaways from Our Critical Review

Here, we summarise our review of Yuan et al., aiming to contribute
to the development of improved DNN coverage criteria:
Definition of Coverage Criterion: When designing a new DNN
coverage criterion, some important foundational principles behind
coverage criteria in traditional software testing should be preserved,
such as monotonicity, order independence and its usage as a stop-
ping criterion. If a proposed criterion fails to meet these key re-
quirements, it becomes difficult for developers to understand what
it measures. While the eight requirements suggested by Yuan et al.
provide valuable insights, we emphasise the importance of main-
taining legitimacy as a coverage criterion while striving to satisfy
them.
Layer-Specific Coverage Reporting: As highlighted in Sections 3.2.3
and 5.3, we observed that aggregating NLC coverage across all lay-
ers results in a loss of layer-wise information. A simple yet effective
solution is to report coverage for each layer individually rather than
collapsing it into a single metric. This approach aligns with tradi-
tional software coverage practices, where reports are generated at
different granularities (e.g., file-level, class-level, function-level) to
help developers identify and address low-coverage areas. Develop-
ers would still remain free to focus on one or more specific layers,
which are expected to perform semantically meaningful computa-
tions and ignore the coverage measures for the others. However,
a potential drawback of this multi-dimensional coverage report-
ing is that it establishes only a partial order relation, which can
render certain pairs of test sets incomparable. For instance, given
two test sets Ty and T2, T; might achieve high coverage on layer [;
but low coverage on layer Iz, while the opposite could be true for
T,. If a single scalar measure is desirable, our findings suggest that
simply summing the coverage values is inadequate unless appro-
priate normalisation measures are applied to ensure meaningful
aggregation.
Pitfalls in Establishing Ground Truth: We caution against set-
ting a predefined ground truth order for test sets when evaluating
DNN coverage criteria, as it can be misleading and compromise
the validity of the evaluation. The definition of what constitutes a
strong vs. a weak test set is inherently challenging in general. How-
ever, we propose that an order can be established for monotonic
sequences of test sets, provided that the corresponding coverage
criteria are also monotonic. Specifically, a sequence of test sets can
be carefully constructed such that each subsequent set is a superset
of the previous one. This allows for the quantification of a coverage
criterion’s sensitivity to the transition from a weaker to a stronger
test set, which can then serve as a basis for comparison [14].
Ultimately, the primary goal of a coverage criterion is to ensure
that the test set is sufficiently robust to detect all or most faults that
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might otherwise emerge in real-world scenarios. Hence, we recom-
mend empirically assessing and comparing how different coverage
criteria respond to test sets with different fault-revealing capabili-
ties, considering real or artificially injected faults. Another viable
approach is to integrate a coverage criterion into an automated
test generator and evaluate its capability to drive the test generator
toward the generation of useful, fault-revealing tests. This method
allows for the comparison of different coverage criteria based on
their capability to guide the test generator toward exploring critical
regions of the input space.

7 Related Work

Previous research has critically examined DNN coverage criteria,
revealing important limitations. Recent studies have shown that
higher coverage metrics do not always correlate with improved
model quality [36, 37] and are often less effective than adversar-
ial methods [23]. Harel et al. [11] empirically demonstrated that
increasing NC can sometimes be counterproductive, as it may gen-
erate less natural inputs and even negatively correlate with fault
detection. Yuan et al. [38], our reference work, also revisited existing
DNN coverage criteria, identified their shortcomings, and proposed
eight design requirements for more effective criteria. Building on
Yuan et al’s contributions, our work critically evaluates their pro-
posed criteria and refines their guidelines. Our goal is to pave the
way for the development of more robust and effective DNN cover-
age criteria.

8 Conclusion

We conducted a critical review of the DNN coverage criterion pro-
posed by Yuan et al. [38], questioning some of their theoretical
and empirical assumptions. Our analysis revealed that NLC fails
to satisfy some of the core properties of a coverage criterion, such
as monotonicity, order independence, and usability as a stopping
criterion, despite the authors’ efforts to meet eight carefully de-
fined design requirements. Additionally, we identified issues in the
empirical study design, particularly the reliance on an unreliable
ground truth for evaluating the test suites. Our critique guides for
improving future DNN coverage metrics, emphasising the need for
evaluation methods that align with the practical value a coverage
criterion is expected to deliver to developers.

Data Availability

The code and data for our empirical validation are publicly avail-

able [1].
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