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Abstract
Recent research on testing autonomous driving agents has grown
significantly, especially in simulation environments. The CARLA
simulator is often the preferred choice, and the autonomous agents
from the CARLA Leaderboard challenge are regarded as the best-
performing agents within this environment. However, researchers
who test these agents, rather than training their own ones from
scratch, often face challenges in utilizing them within customized
test environments and scenarios. To address these challenges, we
introduce PCLA (Pretrained CARLA Leaderboard Agents), an open-
source Python testing framework that includes nine high-performing
pre-trained autonomous agents from the Leaderboard challenges.
PCLA is the first infrastructure specifically designed for testing var-
ious autonomous agents in arbitrary CARLA environments/scenar-
ios. PCLA provides a simple way to deploy Leaderboard agents onto
a vehicle without relying on the Leaderboard codebase, it allows re-
searchers to easily switch between agents without requiring modifi-
cations to CARLA versions or programming environments, and it is
fully compatible with the latest version of CARLA while remaining
independent of the Leaderboard’s specific CARLA version. PCLA
is publicly accessible at https://github.com/MasoudJTehrani/PCLA.

CCS Concepts
• Security and privacy → Software security engineering; •
Software and its engineering→ Search-based software engi-
neering.
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1 Introduction
The autonomous vehicle industry is rapidly growing, with extensive
research focused on testing and improving the robustness of au-
tonomous driving agents (ADAs) [13, 19–22]. Testing these agents
in challenging scenarios is an active area of research that requires
either access to a real-world autonomous vehicle in a controlled
test track or a simulation that replicates realistic environments [18].
Since simulations are more cost-effective, they are the preferred
solution for extensive test campaigns. Thus, they play a crucial role
in autonomous vehicle testing. Among the available simulation
platforms [11], CARLA [5] stands out as the leading choice. It is
open-source, supported by a large community, actively maintained,
fully customizable, and it offers features such as multiple weather
conditions and five different types of sensors [11].

To further advance the development of robust ADAs within
the CARLA platform, a competitive challenge, the CARLA Leader-
board [1], was introduced. This challenge allows participants to test
their agents against a series of problematic scenarios and compare
their performance on the Leaderboard. This approach helps devel-
opers make the ‘Leaderboard agents’ robust and possibly ready
for real-world testing/deployment. To ensure fair competition, the
CARLA Leaderboard provides predefined codes that all participants
must use to create and test their agents within the Leaderboard’s
specified scenarios. Participants are not permitted to modify these
scenarios or operate their agents outside the Leaderboard’s ecosys-
tem. These constraints make the agents entirely dependent on the
Leaderboard’s codebase, rendering them at the same time unusable
without it. Researchers who wish to deploy these agents in cus-
tom test scenarios or environments, must first fully understand the
Leaderboard’s code and then modify it according to their needs.

To address this issue and simplify the use of the Leaderboard’s
ADAs on new test environments/scenarios, we introduce PCLA, the
Pretrained CARLA Leaderboard Agents. This open-source frame-
work allows the users to easily deploy their desired ADA onto a
vehicle without relying on the Leaderboard’s codebase. With PCLA,
researchers can operate their vehicle using their selected ADA,
within their own developed CARLA environment, and they are not
forced to stick to a specific version of CARLA, as required by the
Leaderboard. PCLA is compatible with the latest version of CARLA
and simplifies the process of switching between different agents. It
provides a uniform interface, eliminating the burden of adapting
to different programming environments or CARLA versions for
each agent. Moreover, instead of moving the vehicle, PCLA outputs
the next vehicle movement parameters (next action) for the next
frame, so that researchers have the flexibility to apply it to a vehi-
cle for movement or use it in other applications (e.g., system level
attack generation). To the best of our knowledge, this is the first
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infrastructure designed for testing various autonomous agents in
the CARLA simulator.

The six contributions of this work are as follows:

• We introduce a new infrastructure named PCLA, for testing
various autonomous agents in the CARLA simulator.

• PCLA provides a clear method to deploy ADAs onto a vehicle
without relying on the Leaderboard codebase.

• PCLA enables easy switching between ADAs without requir-
ing changes to CARLA versions or programming environ-
ments.

• PCLA provides the next movement action computed by the
chosen agent, which can then be utilized in any desired
application.

• PCLA is fully compatible with the latest version of CARLA,
and independent of the Leaderboard’s specific CARLA ver-
sion.

• PCLA includes nine different high-performing ADAs trained
with 17 distinct training seeds.

2 PCLA
Various research efforts focus on testing autonomous vehicles, in-
cluding test scenario generation and testing ADAs’ robustness
against adversarial attacks [8, 22]. This research often involves
generating complex driving scenarios or altering the environment
to induce failures in the vehicle’s behavior [18]. Consequently, re-
searchers in this field typically do not need to train an ADA but
instead require a ready-to-use agent to evaluate their test methods.
PCLA provides them with an easy-to-use test infrastructure for
CARLA. In this section, we present an overview of the CARLA
Leaderboard, the challenges faced during the deployment of an
autonomous agent in CARLA, our approach to building PCLA, and
a simple example of its usage.

2.1 CARLA Leaderboard
CARLA does not come with a prebuilt ADA, requiring researchers
to select and integrate an agent into the simulation – a challenging
task. Leaderboard agents are commonly selected because of their
strong performance in solving realistic driving scenarios. However,
to use the Leaderboard agents, researchers must thoroughly under-
stand the Leaderboard’s base code and manually modify it to test
different agents. Since each ADA requires its specific setup, this
process becomes increasingly time-consuming and complex when
switching between multiple agents for testing.

The Leaderboard codebase manages all aspects of the simulation,
including environment and traffic. It features predefined scenarios
with various towns and different numbers of actors (i.e., vehicles
and pedestrians). The Leaderboard codebase is responsible for con-
figuringmultiple elements of the simulation. It places sensors on the
vehicle, translates the given route into a CARLA-compatible route
within the specified town, sets up the selected autonomous agent
on the vehicle, handles the progress of time, and manages essential
CARLA aspects, such as the world and client. The CARLA world is
an object that represents the simulation. It serves as an abstraction
layer, providing key methods to spawn actors, modify the weather,
retrieve the current state of the world, and more. The CARLA client,

on the other hand, is the module that users run to request informa-
tion or make changes within the simulation. Each client operates
using a specific IP address and port, communicating with the server
via the terminal. Multiple clients can run simultaneously, allowing
for concurrent interactions with the simulation.

In a typical scenario, the Leaderboard spawns the autonomous
vehicle in a specified town at the starting point of a given route.
Additional actors are spawned at random locations, and a spectator
camera is positioned to provide a bird’s eye view of the autonomous
vehicle. This camera follows the vehicle throughout its journey.

2.2 Challenges
To customize the CARLA world, significant modifications to the
Leaderboard codebase are required, which necessitate a deep under-
standing of the code structure. For instance, users cannot directly
control the specific locations where vehicles and pedestrians are
spawned; they can only adjust the total number of actors. Addi-
tionally, users cannot assign specific missions to non-autonomous
vehicles and pedestrians or dictate their routes to make them move
in the desired direction.

Most recent research [6, 18] emphasizes the importance of lever-
aging the latest technology.While themost recent version of CARLA
is 0.9.15, the Leaderboard continues to rely on CARLA 0.9.10. This
incompatibility makes it difficult for researchers to conduct experi-
ments on the latest advancements in autonomous vehicle testing.

2.3 Approach
PCLA is a framework designed for researchers seeking to deploy
one or more ADAs onto vehicles in CARLA. PCLA empowers the
selected vehicle with the capabilities of the chosen autonomous
agent, allowing users to customize the environment, the actors,
and the actors’ behaviors to their specific needs. PCLA serves as a
middleman, providing the control action output of a Leaderboard
agent directly to the developer.

Under the hood, PCLA leverages the Leaderboard codebase to
simplify the vehicle and agent configuration. It configures the vehi-
cle’s sensors, positions them according to the agent’s requirements,
and sets the selected agent to receive input from these sensors.
To set up the route, PCLA also translates the provided route into
CARLA-compatible GPS coordinates by interpolating a dense tra-
jectory and mapping each waypoint along the route.

Additionally, PCLA manages the time constraints required for
recording the performance during Leaderboard challenges and ad-
justs CARLA’s core variables, such as the world and client, to in-
tegrate them into the Leaderboard’s variables. This abstraction
ensures that developers are not dependent on the Leaderboard’s
codebase. They only need to provide PCLA with the vehicle, route,
and desired agent. PCLA then takes care of the rest, enabling devel-
opers to simply request an action and receive the corresponding
control action for the autonomous vehicle from the selected agent.
When an action is requested, PCLA forwards the request to the
selected agent. The agent computes the control action based on the
state of the ego vehicle and the sensor outputs at that specific time
frame. A control action contains values representing the vehicle’s
actions for a single frame, including throttle, steering, brake, hand
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Figure 1: Overview of how the PCLA framework operates

brake, reverse, manual gear shift, and gear. These are the move-
ment parameters that are essential for the vehicle to determine its
actions in the next frame. The resulting control action can then be
applied to the vehicle, enabling it to move accordingly or be used in
other testing applications. An abstract representation of how PCLA
operates is illustrated in Figure 1

2.4 Usage
To use our framework, users need to import it and provide:

• The name of the desired agent
• The route for the vehicle to follow
• And the vehicle that is aimed to be autonomous

Additionally, users need to pass the CARLA’s clientmodule, which is
required for configuring the Leaderboard attributes. Finally, at any
desired time, users can call the get_action() method from the PCLA
class to retrieve a control action based on a single frame captured
by the agent’s sensors. For a better understanding, a sample code
snippet from the GitHub repository is provided below.

1 from PCLA import PCLA

2

3 agent = "neat_neat"

4 route = "./ sampleRoute.xml"

5 pcla = PCLA(agent , vehicle , route , client)

6

7 ego_action = pcla.get_action ()

8 vehicle.apply_control(ego_action)

In the code snippet above, after importing the framework in line
1, the agent is selected by its name in line 3, and the path to the
route file is specified in line 4. In line 5, the PCLA class is initialized
by passing these variables along with the vehicle and client. Then,
in line 7, the pcla.get_action method is called to retrieve a control
action from the ADA. Finally, in line 8, the action is applied to the
vehicle using the apply_control command in CARLA.

3 Research Scenarios
PCLA is potentially useful in various research scenarios such as test-
ing autonomous driving systems against complex driving scenarios
or testing their robustness against adversarial attacks.

Testing deep neural network-enabled systems (such as ADAs) is
a challenging and costly endeavor, yet it remains crucial in the devel-
opment of many modern systems with artificial intelligence at their
core [6]. Test generation is typically performed automatically by
solving an optimization problem [8]. This involves identifying the

optimal configurations of objects in the environment to maximize
or minimize an objective function. The testing process must select
an appropriate algorithm to learn the actions that maximize reward,
particularly by exposing safety requirement violations within a
given time frame.

Test cases in CARLA can simulate a variety of scenarios that
an autonomous vehicle might encounter. Examples can include
situations where another vehicle suddenly brakes in front [12], a
pedestrian unexpectedly steps into the road [10], or a chaotic scene
happens at an intersection [4].

Another type of autonomous vehicle testing focuses on evaluat-
ing the robustness of an ADA against adversarial attacks or vice
versa. In such research, authors might create adversarial images
or objects and place them in the environment using the CARLA
editor to induce system failures in autonomous vehicles [18]. These
adversarial images or objects, which are invisible to normal human
vision, are strategically placed in locations such as roads, billboards,
sidewalks, or lane markings [2, 14, 16, 19].

Researchers may require the current movement parameters of
the autonomous vehicle to conduct specific analyses. For example,
in DeepManeuver [19], the attack algorithm needs detailed infor-
mation, such as the steering angle and speed, to compute the next
adversarial patch on a billboard. PCLA facilitates such use cases by
providing the control action, which includes complete details about
the vehicle’s movement parameters.

With PCLA, researchers can create customized environments,
vehicles, and actors in the latest CARLA version and perform quick
switching between different agents, allowing researchers to opti-
mize their test scenarios based on various ADAs or observe how
various ADAs respond to the same adversarial attack. This flexibil-
ity greatly enhances the research process of generating test cases in
CARLA and testing the robustness of autonomous systems against
adversarial attacks or vice versa.

4 Related Work
This section is divided into two subsections. The first provides a
brief introduction to the PCLA agents and summarizes the cor-
responding research papers. The second focuses on papers that
explore testing agents within the CARLA simulator.

4.1 Available Agents
Currently, PCLA includes nine Leaderboard agents and 17 distinct
training seeds. These agents were selected for their high perfor-
mance in the CARLA Leaderboard challenge and their compatibility
with newer versions of CARLA and Python packages. The list of
related papers is as follows:

• Hidden Biases of End-to-End Driving Models1. Jaeger
et al. [9] developed an open-source Leaderboard 2.0 starter
kit called CARLA-garage, which includes a dataset, expert
driver, evaluation tools, and training code. Additionally, they
provided pre-trained model weights for TransFuser++, the
best open-source model available at the time of their publi-
cation. This repository contained four pre-trained models
and their weights, and 12 training seeds, all of which are
included in the PCLA framework.

1https://github.com/autonomousvision/carla_garage

https://github.com/autonomousvision/carla_garage
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• NEAT:NeuralAttention Fields for End-to-EndAutonomous
Driving2, proposed by Chitta et al. [3], includes four differ-
ent agents. The paper argues that efficient reasoning about
the semantic, spatial, and temporal structure of a scene is a
critical prerequisite for autonomous driving. It introduces a
continuous function that maps locations in Bird’s Eye View
(BEV) scene coordinates to waypoints and semantics. This
mapping is achieved through intermediate attention maps,
which iteratively compress high-dimensional 2D image fea-
tures into a compact representation. PCLA includes all four
agents from this paper, making them easily accessible and
switchable.

• InterFuser: Safety-Enhanced Autonomous Driving Us-
ing Interpretable Sensor Fusion, Transformer3 intro-
duces an agent called TransFuser. Shao et al. [17] proposed
a safety-enhanced autonomous driving framework named In-
terpretable Sensor Fusion Transformer (InterFuser). This
framework is designed to fully process and fuse data from
multi-modal, multi-view sensors to achieve comprehensive
scene understanding and adversarial event detection. This
repository, which includes one agent, is integrated into PCLA
and allows users to view the agent’s sensor feed live.

4.2 Testing on Carla Agents
Many studies have explored testing autonomous systems within
the CARLA simulator environment [18].

In the area of test generation, Haq et al. [7] introduced SAMOTA,
a novel approach for effectively and efficiently generating test
data for DNN-enabled systems in the context of online testing.
This method combines surrogate-assisted optimization with many-
objective search to evaluate and test advanced DNN-enabled au-
tonomous driving systems within the CARLA simulator.

Later again, Haq et al. [8] introduced MORLOT, a novel online
testing approach that leverages reinforcement learning (RL) to
incrementally generate sequences of environmental changes. This
approach utilizes many-objective search to identify changes that
are more likely to uncover previously untested scenarios within
the CARLA simulator.

For adversarial attacks, in the research conducted by Boloor et
al. [2], using the CARLA simulator, adversarial road lines were
painted by the attacker at intersections or on curved roads. These
lines were designed to point in the opposite direction of the lane’s
intended turn, causing the victim’s car to turn incorrectly and hit
the road walls or lose its path.

Pavlitskaya et al. [14] proposed an approach to manipulate an
autonomous vehicle’s trajectory by placing a printed adversarial
patch on the roadside in the CARLA simulator. This intervention
caused the vehicle to steer toward the patch, ultimately resulting
in a collision.

Piazzesi et al. [15] manipulated the trained agent’s neurons and
weights, along with the input images, to induce incorrect steering
decisions and traffic light misdetections. These modifications led
to severe outcomes, including collisions with surroundings, lane

2https://github.com/autonomousvision/neat
3https://github.com/opendilab/InterFuser

departures, off-road driving, running through intersections, and
ignoring traffic lights all in the CARLA simulator.

By using PCLA, the authors of the above-mentioned papers
would have been able to design and implement the code for their
experiments more quickly and easily, with the possibility to experi-
ment with multiple driving agents operating on the latest version
of CARLA, thanks to the abstraction layer provided by our frame-
work.

5 Conclusion & Future Work
ADA testing researchers often choose driving agents from the
CARLA Leaderboard, as these agents achieve state-of-the-art per-
formance. PCLA simplifies the complex task of finding and using
a pre-trained autonomous driving agent from the Leaderboard in
the CARLA simulator. With PCLA, researchers can easily select
and switch between nine of the highest-performing CARLA Leader-
board agents, and can easily deploy them onto a vehicle, or use their
outputs e.g. for system level attack generation, without requiring
any prior knowledge of the Leaderboard codebase.

Additionally, PCLA eliminates the restriction of using a specific
CARLA version by being fully compatible with the latest version of
the simulator. This framework is particularly valuable for testing
and evaluating various agents in customized scenarios.

Looking ahead, we plan to expand the PCLA framework by
including more Leaderboard agents and introducing more generally
a wider variety of existing driving agents, to further enhance its
versatility.

Framework Repository
The framework, source code, step-by-step tutorials, and a sample
code are publicly available at https://github.com/MasoudJTehrani/
PCLA
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