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Abstract—Smartphone vendors apply both device and brand-
specific customisations to the underlying operating systems,
resulting in a wide range of device configurations. It is crucial that
all of the device variations provide compatibility with the default
version of the underlying operating system, such as Android.
To ensure that widely and commonly used apps run on each
of these device variations without any problem, vendors depend
on automated GUI level testing of widely and commonly used
apps: the failure of a GUI test script that emulates a routine
usage of these apps would raise an alarm that a recent change
made to a specific device variation may have caused a regression
fault. These GUI level compatibility smoke tests are unique in
the sense that they are GUI level automated test scripts that are
written outside the software development lifecycle of the target
apps: they are written and maintained by the engineers of the
smartphone vendors, and not the app developers. As such, these
test scripts are extra vulnerable to the fragility of GUI test scripts,
which are already known to be fragile when maintained by app
developers. This paper introduces a repair technique for View
Identification Failures (VIFs) in those smoke tests so that the
smartphone vendors can quickly update their GUI test scripts
when they break due to changed view ids. Our technique matches
view ids between old and new versions of the target app based
on various similarity metrics such as the semantic embedding
similarity between ids and GUI labels, and layout similarity
based on node embeddings of the GUI layout tree. We evaluate
the proposed technique using 512 VIFs collected from real-world
Android mobile apps. The proposed technique can repair 72%
of the 512 studied VIFs with only one attempt, compared to 28%
repaired using lexical distance-based matching.

Index Terms—GUI Testing, Test Repair, View Identification
Failure, Android

I. INTRODUCTION

Android mobile platform occupies more than 80% of the
world-wide smartphone market [1] and has a rich and diverse
ecosystem that includes various devices as well as vendor
specific customisations both in hardware and software. While
these customisations add value to customers, they also con-
tribute to the phenomenon known as device fragmentation [2]:
due to the numerous combinations of device models, vendor
specific customisations, and rapidly evolving operating system

versions, it is extremely difficult to test an Android mobile app
exhaustively against all configurations.

While the device fragmentation presents testing challenges
for developers of individual apps, it also poses a unique
challenge for smartphone vendors. When developing a new
hardware device, or a software customisation layer, smart-
phone vendors need to make sure that the newly developed
variation is compatible with the app ecosystem, i.e., they
should guarantee that important, widely used mobile apps can
run without any problem on top of the new variation under
development. A failure to execute common and popular apps
can be considered as a regression from the perspective of the
smartphone vendors.

One way to prevent such regression is to adopt automated
GUI testing. A routine usage of target apps can be emulated
with automated GUI test scripts, using GUI test automation
framework such as Espresso.1 Failures from these GUI smoke
tests may suggest that recent changes made to the underlying
device customisation contain some issues [3].

However, such an approach suffers from the same issue that
plagues automated GUI testing of Android apps, which is the
inherent fragility of GUI test scripts. A GUI test script is
fragile because a relatively small change in the appearance
of an app can break test cases that traverse the GUI [4].
One example of such fragility is View Identification Failures
(VIFs) [5]. Typically, an automated GUI testing framework for
Android first identifies a GUI element (i.e., a view), such as a
button, and subsequently triggers a GUI event to the specified
view in order to emulate user interaction. For example, the
following is a test snippet written using Espresso: it finds a
button with view identifier btnConfirm and clicks it.
onView(withId(R.id.btnConfirm))

.perform(click());

A view identification failure occurs when the latest mod-
ification to the app source code changes the view identifier
btnConfirm to btnOk, but the test case is still looking for a

1https://developer.android.com/training/testing/espresso
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button with the old identifier. Consequently, the test execution
terminates with a ViewMatchingException, or a compile error
due to an unknown resource, despite the fact that the logic of
both the app and the test case has not changed. VIF is listed
as one of the major causes of Android test fragility in a recent
survey of Android test practices [5]. The vendor written GUI
smoke test scripts are even more VIF prone than GUI test
scripts written by app developers, since they are separated
from the development activities of the target apps: any changes
in GUI are not directly visible or trackable for the vendor.

This paper presents VIFER, a view identification failure of
test repairer that exploits the similarities between old and
new view elements in Android GUI. To repair a VIF, we
need to match the old, obsolete view identifier to its new
counterpart, and update it. To match an old view identifier to
the new one, we exploit not only lexical and semantic distance
between view identifiers themselves, but also compare the
similarity between the relative positioning of the views in the
overall GUI layout using graph node embedding. Using these
distance metrics as features, we formulate the repair problem
as a classification problem: given a pre-change identifier (used
by the broken test case) and a set of post-change identifiers
(collected in the modified app source code), we classify which
of the post-change identifiers is most likely to match the pre-
change identifier. The results of classification are presented as
a ranking of post-change identifiers. An empirical evaluation
based on real world VIFs shows that VIFER can repair
88.5% of the failures within three patching attempts, and
precisely matches post-change identifiers for 71.7% of the
studied failures by ranking the correct one on top. This is
a significant improvement over the existing developer support
tool based on lexical similarity only, which can repair 43.2%
of the failures within three attempts.

The remainder of the paper is organised as follows. Sec-
tion II describes the view identification failure in more de-
tail and introduces the formulation of our repair technique.
Section III presents the experimental setup of the empirical
evaluation, the results of which are reported in Section IV.
Section V presents the threats to validity. Section VI describes
the related work, and Section VII concludes.

II. REPAIRING VIF BY IDENTIFIER MATCHING

This section defines View Identification Failure (VIF) and
presents our formulation of VIF repair as a classification
problem. Subsequently, it also introduces various features we
use for the classification.

A. View Identification Failure

The View class is the base class for all Android GUI
widgets. An automated GUI test case emulates user interaction
by 1) identifying a specific view (such as a button), and 2)
invoking a specific GUI event (such as click). For the first step,
the test case typically uses unique properties of the view, such
as the given view identifier. View Identification Failure (VIF)
occurs when an automated GUI test case fails to specify a view
to which it wants to invoke a GUI event. This inconsistency

is often caused by the fact that the GUI, i.e., the external
appearance of an Android app, may go through modifications
that do not involve any change of the underlying logic of the
app. If only the GUI part of the app is changed, and not the
test case code, then VIF occurs.

This paper specifically focuses on VIFs that involve out-
dated View identifiers. All GUI widgets can be given identi-
fiers in the layout resource files in XML format that defines
the visual structure in an Android application: these identifiers
are accessible from within the app source code via the auto-
matically generated class named R.java with R.id.* object.
Views can be targeted by test cases via their identifiers.

Let us use the terms pre- and post-change identifier to refer
to the outdated identifier in the test code, and the new, modified
identifier in the app code; we will hereafter also use id to stand
for view identifiers for the sake of brevity. If the relationship
between pre- and post-change ids are completely arbitrary, an
automated repair would not be feasible.

The common cause of view identification failure, however,
is the fact that the external appearance of the app (i.e., the
GUI design) can evolve even when the internal logic of the
app does not. While the separation of concern between GUI
appearance and the code allows room for VIFs, it also provides
a ground for automated repair: if the underlying app logic
has not changed at all, or changed only slightly, we can
expect that the new identifiers or names given to the updated
GUI elements will be similar to the previous names. If, for
example, the latest GUI modification was simply to fix typos
in view identifiers, the old and the new ids will be lexically
similar. Even if the change was more complex than a simple
typo fix, as long as the core logic wrapped inside the GUI
remains largely the same, we expect the old and the new
identifiers to be semantically similar. This continuity in the
app functionality allows us a few different hypotheses, which
we will consider in the following sections.

B. VIF Repair as a Classification Problem

We formulate VIF repair as a classification problem. Given
two versions of Application Under Test (AUT), namely the
original version and the latest version, we denote them as A
and A′ respectively. Let T be the GUI test case before the GUI
change that is now broken due to VIF. The pre-change view id,
i, only appears in T . Finally, let Ic be the set of all candidate
post-change view ids that appear in A′: Ic = {ic|ic ∈ A′}.

VIF repair is essentially the problem of finding i′ ∈ A′

such that i′ is the modified version of i. Given a pair of pre-
and post-change view ids, (i, ic), we label the pair 1 if the
pair is the correct match between the same GUI widget with
modified view ids, and 0 otherwise. We train a binary classifier,
C, of view id pairs based on this labelling, using actual view
identifier changes collected from open source Android app
repositories.

C(i, ic) =

{
1, if ic = i′,
0, otherwise.
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To repair unseen identifier changes, we use softmax proba-
bilities for label 1 obtained by the classifier. More specifically,
for all candidate ids in Ic, the softmax probabilities are used
to rank potential match candidate, ic. We can repair the test
T that is broken by VIF using the best matched candidate as
follows (or top-k matches):

T ′ = T [i← ic] s.t. ic = argmax
ic∈Ic

C(i, ic)

Ideally, the correct match, i′, should be ranked at the top,
and will be used to update T to T ′ by replacing i with i′.

C. Identifier Similarity-based Input Features

We now turn our attention to the input features for the
classification model. Intuitively, we assume that pre- and post-
change view ids will be still similar to each other, due to
the continuity in the underlying functionality of the AUT. If
the change in GUI is mostly cosmetic, the pre- and post-
change view ids are likely to represent the GUI widgets that
perform similar functionalities. This, in turn, suggests that
the developer may use similar names to communicate the
functionality behind the view to other human developers [6]. In
this paper, we consider both lexical and semantic similarities
as input features.

1) Lexical Similarity Feature: One common type of super-
ficial GUI changes related to VIF is the systematic change
of view id naming convention. For example, it is possible
that the pre-change id did not include the GUI widget type
(e.g., Confirm), and the post-change id was modified so that
it follows a naming convention that requires the widget type
to be explicitly reflected in the id (e.g., buttonConfirm or
btnConfirm). With naming convention changes, it is likely that
part of the pre-change id remains the same in the post-change
id. Consequently, we expect the lexical similarity, captured by
Levenshtein distance [7], to capture this relationship. Leven-
shtein distance is a specific type of edit distance between two
strings, a, and b, which is formally defined as follows:

lev(a, b) =



|a|, if |b| = 0,
|b|, if |a| = 0,
lev(a[1 :], b[1 :]), if a[0] == b[0],

1 + min

 lev(a[1 :], b),
lev(a, b[1 :]),
lev(a[1 :], b[1 :])),

otherwise.

We hypothesise that the correctly matched pair, (i, i′),
will have higher lexical similarity than other pairs, for view
modifications such as typo fixes or application of new naming
conventions. Note that lexical similarity is the basis of the
current technique deployed to assist developers with VIFs, and
therefore also is our baseline.

2) Semantic Similarity Feature: It is also possible that the
change causing VIF is more semantic than the simple lexical
addition of pre- or suffixes. If the change made to the view
id reflects a minor change in the underlying functionality,
the post-change view id may still be semantically similar to

the pre-change id. For example, btnConfirm may have been
modified into btnOK. Lexical similarity cannot detect such
relationships, so we introduce word embedding [8] to measure
semantic distance between two view ids.

Since we want to exploit the semantic continuity in the
functionality of the app (reflected in the view ids), we use
an embedding model that is pre-trained for natural language
corpus in English. However, view ids are often not single
words: they are rather composite words made up of multiple
tokens (such as submitButton). To cater for the composite
word ids, we tokenise each identifier and apply the word
embedding to the constituent tokens. More formally, given two
view ids, i1 and i2, and a pre-trained word2vec embedding
model, w2v, the semantic similarity sem(i1, i2) is computed
as follows, where cos sim denotes cosine similarity:

τ1 = {t : token t is part of i1}, τ2 = {t : token t is part of i2}

sem(i1, i2) = max
(ti,tj)∈τ1×τ2

cos sim(w2v(ti), w2v(tj))

We hypothesise that, for a superficial view id change from
i to i′ that does not involve any significant change of the
underlying app functionality, i and i′ are likely to be seman-
tically similar to each other, reflecting the continuity in app
functionality. Given such similarity, it is also likely that tokens
t and t′ from i and i′ respectively have high cosine similarity
when embedded in vector forms. Note that when the changes
made to the given pre-change view id is simply an addition of
prefix or suffix, semantic similarity will produce the highest
similarity, because both pre- and post-change view ids will
include identical tokens.

D. Layout Similarity-based Input Features

Given the degree of freedom in natural language, we cannot
guarantee that the use of lexical and semantic similarity is
sufficient to capture all relationships between pre- and post-
change view ids. For example, suppose the post-change view
id entirely consists of an acronym that is not contained in
the word embedding dictionary, or even non-English words:
neither lexical nor semantic similarity computed via word
embedding may cope well against such changes.

To assist identifier similarity features in such a situation,
we introduce the structural similarity between GUI elements
containing the pre- and post-change view ids in layouts.
Layouts in an Android application define the structure for a
user interface using a tree hierarchy of multiple GUI elements.
Each GUI element corresponds to a node in the layout tree;
in turn, each node contains multiple view properties such as
text, style, onClick, src as well as id, as well as the type
of the view, such as Button or TextView.

Analogous to our assumption about the continuity of AUT
functionalities, we hypothesise that, despite cosmetic changes,
pre- and post-change views will be placed in the same, or sim-
ilar, locations within the hierarchy of the GUI. Consequently,
we posit that using the similarity between surrounding layout
context of GUI elements would help predict evolutionary
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(a) id property based layout graph

RelativeLayout
@id=readyq

RelativeLayout
@id=quizLayout

TextView
@id=name, @text="quiz!"

LinearLayout
@id={questionQuizButtons,
questionQuizOptions}
@text="sample"

Button
@id=button0

Button
@id=button1

Button
@id=button2

Button
@id=option0

Button
@id=option1

Button
@id=option2

(b) text property based layout graph

Fig. 1: Example layout graphs constructed for a pre-change id button0 with different target property configurations. Lightgrey
boxes indicate pre-change version layout, white boxes indicate post-change version layout, and darkgrey boxes are merged
nodes of pre- and post-change elements. Simple lines indicate edges in the graph, and the arrows denote evolution links from
pre- to post-change elements.

link from a pre-change GUI element to the post-change GUI
element more precisely than using only identifiers.

1) Layout Graph Construction: To measure the structural
similarity between the target GUI element referenced by a pre-
change id and the GUI elements in the post-change version,
we merge the layout trees in pre- and post-change versions of
the AUT by identifying unchanged (and therefore overlapping)
views, and measure the similarities between the pre-change
node and the post-change candidate nodes. We use node2vec
to measure the similarities between nodes using its node
embeddings [9]. node2vec learns embeddings of nodes by
maximising the likelihood of preserving network neighbour-
hood. As a result, node representation vectors are close to each
other when the corresponding nodes share similar neighbour
nodes (Network Homophily), or when they are located in
similar substructures in the graph (Structural Equivalence). See
Section II-D3 to see the details of how node2vec is used to
measure the similarities.

Algorithm 1 explains how VIFER constructs a unified graph
structure. The algorithm takes the pre-change and post-change
version app source P and P ′, (specifically, files in the app
containing the defined layouts), pre-change view identifier
preChangeId that caused the failure of the test case to be
repaired, and target properties targetProps to decide the
identity of nodes in graph, i.e., GUI elements with the same
values at all target properties are regarded as the same (see
Section II-D2 for details of how we select target properties).
For each statically defined layout file in app source code,
the XML structure is imported as a tree (Line 5): we merge
the nodes sharing selected targetProps to represent each
node solely based on the selected GUI properties (Line 6).
The trees with generalised nodes are composed iteratively
(Line 13). Composing the two graphs results in merging the
nodes present in both graphs, and with the same values for
targetProps. For the pre-change version, only the layout trees
containing preChangeId are considered for the final graph.

A similar process is applied for every post-change version
layout to merge nodes and compose trees (Line 14-16). Note
that the resulting graph G can include disconnected compo-

nents. This is because there are cases where the layout that
contains the pre-change view does not have any overlapping
node with the layout that contains the candidate post-change
view with respect to a specific target property configuration.
This results in no edges between these two layouts. Discon-
nected components are prone to occur when we set more
target properties (e.g., all configuration in Section II-D2) to
distinguish nodes. We extract connected graphs containing
one pre-change node (i.e., a node that has id property of
preChangeId) and all of the nodes that are reachable from
the pre-change node and edges between them (Line 18).

2) Target Property Selection: In VIFER, layout graphs are
constructed multiple times based on different subsets of GUI
properties listed below. Among the diverse properties used
in Android GUIs, we choose five properties: id (the view
identifier), text (the text displayed on the view, such as the
labels on buttons), style (the string definition of its visual
style, onClick (the name of the onClick event handler), and
src (the name of the graphical resource used by the view). We
additionally include the type used to define the GUI elements
(e.g., Button, TextView) and treat it as a property.

We consider each of these properties as the node representa-
tion, as well as the following four combinations of properties:

• (all) Use all selected properties: {id, text, src, onClick,
style, type}

• (all-except-id) Use all selected properties except for id:
{text, src, onClick, style, type}

• (visual) Use visual-related properties: {src, style, type}
• (content) Use content-related properties: {onClick, text}

For example, under the all properties configuration, a node
is considered to be identical to another only when all six
properties are equal. However, under the visual properties
configuration, any two nodes that share the same src, style,
and type property values are considered to be identical.
Using a range of target properties allows us to consider the
structural contexts in given GUI layout trees from diverse
perspectives. Figure 1 presents an example substructure of the
layout graphs built on two different properties for representing
nodes: id, and text respectively. Consider the element with
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Algorithm 1: Layout graph construction to learn node
embedding.

1 CreateGraph (P, P ′, preChangeId, targetProps)
Inputs : Pre-change version app P ; Post-change version app

P ′; Pre-change view identifier from the failed test case
preChangeId; Target properties set targetProps;

Output: Set of graphs of GUI elements both from P and P ′.
2 G← graph();
3 Gset ← set();
4 PreNodes← set();
5 foreach T ∈ getLayoutTrees(P ) do
6 T = mergeNodes(T, targetProps);
7 hasPreChangeNode← False;
8 foreach N ∈ T.nodes do
9 if N.hasId(preChangeId) then

10 PreNode.add(N);
11 hasPreChangeNode← True;

12 if hasPreChangeNode then
13 G← compose(G,T );

14 foreach T ∈ getLayoutTrees(P ′) do
15 T = mergeNodes(T, targetProps);
16 G← compose(G,T );

17 foreach N ∈ PreNodes do
18 Gset.add(connectedSubgraph(G,N));

19 return Gset;

20 mergeNodes (T, targetProps)
21 foreach Ni, Nj ∈ T.nodes do
22 if Ni.get(targetProps) ≡ Nj .get(targetProps) then
23 Ni.parents← Ni.parents ∪Nj .parents;
24 Ni.children← Ni.children ∪Nj .children;
25 Nj .parents← set();
26 Nj .children← set();

the id button0 in the pre-change version, which is changed
to the element with id option0 in the post-change version. As
shown in Figure 1a, if we construct a graph using Algorithm 1
and merge nodes by the id property, the actual pre- and post-
change node containing the changed view ids do not show
considerable similarity. This is because the id of the parent
element of the two nodes has changed as well, thereby also
changing the neighbouring contexts of these nodes. In contrast,
for the layout graph based on text property in Figure 1b,
pre- and post-change nodes share the same parent because the
parent maintains the same text attribute across the change.

3) Structural Similarity Feature using Node Embeddings:
For each graph including a pre-change node, we train a
node2vec model to generate node embeddings, and measure
cosine similarity between the embeddings of the pre-change
node and any other nodes to which any id property is
assigned.2 Given a subgraph g ∈ Gset returned by Algorithm 1
as well as a pair of view ids (i.e., pre-change id and a candidate
post-change id), a and b, we first compute the cosine similarity
between node na and nb in g, which are nodes whose id is
a and b, respectively. Since there may be multiple views with

2Since we are aiming to resolve a VIF, by definition we are looking for a
post-change view that has an id.

the same id,3 we consider sets of nodes with the id a and b:

Na,g = {n|n ∈ g∧ id(n) = a}, Nb,g = {n|n ∈ g∧ id(n) = b}

The structural similarity between (Na,g and Nb,g), based on
property p on g is defined as:

σp(Na,g, Nb,g) = max
(na,nb)∈Na×Nb

cos sim(n2v(na), n2v(nb))

Finally, we compute the structural similarity based on property
p between id a and b as follows:

str sim(a, b, p) = max
g∈Gset

σp(Na,g, Nb,g)

E. Text Property Similarity-based Input Features

One property that can reflect the functionality of the view is
the resource id handle that is used to load the text labels from
the resource pool to the view. To support internationalisation,
a text property value is typically assigned to a GUI element
from the pool of predefined string resources. As such, the
resource id used as the alias to the actual string value may
reflect the functionality of the view that receives the text label.
Consequently, based on the same continuity hypothesis, we
expect that the post-change resource id to be similar to the
pre-change id.

If the text property values (either resource ids or string
literals) between pre- and post-change views are identi-
cal, structural similarity based on text property can cap-
ture the relevance, as pre- and post-change views will
be merged in the graph, resulting in a similarity of
1.0. However, there may be changes that affect the text
property itself. For example, a view id change from
@+id/buttonLinkDropbox to @+id/buttonSetupSync can
accompany the change of text property from the resource
id of @string/configure dropbox to a new resource id
of @string/configure sync. To handle such changes, we
introduce a similarity feature for the text property: essentially,
this is the semantic similarity between text property values.

F. Ranking using Cascaded Classifiers

Our classification model uses a total of 13 features in
three major groups described in the previous section: lexical
and semantic similarity on view ids (2), structural context
similarity on layouts (6 individual similarity metrics, plus
4 target property configurations), and semantic similarity on
the text property (1). While the view id and layout-based
similarities can be measured between any pair of pre- and
post-change views, the text property-based similarity feature
could be missing when the pre-change view does not have
the text property value. Consequently, our technique contains
two separate classifiers, one that includes the text property-
based similarity as an input feature, and the other that does
not. Given a classification algorithm A, we use the following
classification models A2 and A3 depending on whether the
text property-based similarity feature is available or not:

3This is possible when these views exist in different Android layout files.
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• A2: the classifier A2 is an instance of algorithm A that
uses view id-based similarity and layout-based similari-
ties as input features.

• A3: the classifier A3 is an instance of algorithm A that
uses all three types of input features: view id-based sim-
ilarity, layout-based similarity, and text property-based
similarity.

Suppose we choose Logistic Regression (LR) as our classi-
fication algorithm. Given a pair of pre- and post- change view
ids, the cascaded classifiers will first check whether any GUI
element with the pre-change id has text attributes: if so, LR3

will be to classify whether the pair of ids points to the same
GUI widget or not and produce prediction scores for further
ranking. If not, it will apply LR2.

G. Test Case Repair

We evaluate our GUI test case repair technique by simulat-
ing VIFs in real-world Android applications and subsequently
applying our view id repair based on rankings produced from
cascaded classifiers. We first collect view id changes (i.e., pairs
of pre- and post- change ids) from the version history of each
app. Using the changes, VIFs can be simulated by replacing
the post-change view id in the test case to the corresponding
pre-change view id. The list of Android applications used for
constructing repair targets are presented in Section III-B. For
the sake of simplicity, we make the single VIF assumption,
i.e., that there only exists a single VIF in a test case without
any other test failures. Hence, it becomes possible to decide
whether the simulated VIF has been successfully repaired
simply by checking whether the test case broken by VIF
passes after replacing the outdated pre-change view id with
the matched post-change view id. Below are the repair steps:

1) Localisation of VIF: Using the failure message
either caused by a compiler error or a runtime
ViewMatchingException, we localise the exact source
code location of the outdated view identifier.

2) Identification of GUI layout context and properties:
We try to extract GUI layout files from both for pre- and
post- change versions. Currently, we use static layout
files contained in the resource directory of app source
code. To combine the pre- and post-change layouts,
we apply the graph construction process described in
Section II-D. Afterwards, we build the candidate view
id pool in the post-change version (see Section III-B
for more details about how we construct the candidate
view id pool). We can also identify whether a text
property exists for the pre-change view id. Depending on
the existence of the text property, we determine which
model to use as described in III-C.

3) Ranking candidate identifiers by model: According
to the possible number of features identified from the
previous step, the features are dynamically measured and
fed into the cascaded classification model.

4) Iterative repair: Once the list of the ranked candidate
view ids is generated, our repair technique iteratively
replaces the outdated view identifier with the candidate

id in order, and terminates when the test case passes.
We heuristically consider that the repair attempt was
successful if the target test case passes.

The performance of our repair technique largely depends
on the accuracy of our classification model, as the essence of
the repair is the update of the view id. We still opt to evaluate
the repair process separately, to investigate how effective the
supporting steps (such as localisation and iterative repair) are.

III. EXPERIMENTAL SETUP

This section describes the details of our experimental setup
for the empirical evaluation.

A. Research Questions

We aim to answer the following research questions to
evaluate our proposed approach.

RQ1. Similarity Effectiveness: How effective are the
individual similarity metrics described in Section II-C? We
answer RQ1 by sorting all post-change candidate view ids
according to each individual similarity feature and checking
the rank of the correct post-change candidate. We use acc@n
as the evaluation metric, which is the number of pre-change
view ids for which our technique can rank the correct
post-change counterpart within the rank of n. Ties are broken
using max tie-breaking.

RQ2. Model Effectiveness: How effective is the classification
model trained on multiple features when compared to
individual similarity features? We study classification models
with different input feature configurations: only identifier-
based similarity, identifier and layout-based similarity,
identifier, layout, and text property-based similarity. We
answer RQ2 by verifying whether that adding more similarity
features from diverse sources linked to the view ids improves
post-change view identification. As before, we rank the post-
change candidate ids using the prediction scores obtained by
classification models, and compare the models using acc@n
evaluation metric.

RQ3. Repair Performance: How effective is VIFER for
repairing View Identification Failure in realistic GUI testing
settings? We answer RQ3 by applying the test case repair
described in Section II-G to the failing GUI test cases due
to VIF. We report the rank of the correct post-change id that
makes the broken test cases pass among all identified candidate
post-change ids.

B. Subjects

Table I contains ten open source Android apps used in
our study. All of these apps use the Espresso test automation
framework, and have been studied by Coppola et al. [5] for
Android test fragility. From the repositories of these ten apps,
we extract 376 commits that modify only view ids and not
the app code, as these commits are likely to result in VIF.
The 376 commits provide a total of 512 pairs of pre- and
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TABLE I: List of subject Android apps

Name # of Commits # of ID Changes w/ Text Prop.

Pr0 20 20 7
akvo-caddisfly 51 144 78
alltrack 1 2 2
andFHEM 22 47 27
android 156 148 70
android-money-manager-ex 33 36 13
android Skeleton 11 23 3
cominghome 2 2 1
poly-picker 2 15 4
ts-android 78 75 47

Total 376 512 252

post-change view ids, (i, i′), as well as negative pairs of the
other post-change view ids that are also contained in the post-
change version. These 512 id change cases form the basis of
our empirical study for RQ1 and RQ2.

While all such pairs can provide the textual (i.e., lexical
and semantic) similarity between two view ids, not all pairs
yield connected GUI elements with text property. Table I also
shows how many pairs provide the additional text property-
based similarity features described in Section II-C.

To evaluate our classification approach for RQ2, we also
need to define the pool of post-change candidate view ids. we
take all post-change view ids that appear in the GUI layout
resource of the AUT and consider all of them as the candidate
post-change view id pool.

We apply ten-fold cross validation for evaluation of models.
The reported model performance is aggregated across the
results from each fold: the result for each pair of (i, i′) is
taken from the run in which the fold that contained the given
pair was used for validation.

TABLE II: List of Android apps used for simulating repair

Name # of TC Repository URL

blabbertabber 3 https://github.com/blabbertabber/blabbertabber
KISS 5 https://github.com/Neamar/KISS
JustBe-Android 6 https://github.com/justbeneu/JustBe-Android
gini-vision-lib-android 1 https://github.com/gini/gini-vision-lib-android
NoiseCapture 1 https://github.com/Ifsttar/NoiseCapture

Total 16

To answer RQ3, we emulate realistic VIF scenarios using
view id changes we find in open source Android apps. We use
a separate set of five open source Android apps, described in
Table II: these apps are also studied by Coppola et al. [5]. Due
to various version compatibility issues, we emulate test cases
broken by VIF, instead of mining their timeline to find exact
VIFs. For this, we first identify a pair of pre- and post-change
view ids, (i, i′), that actually took place during the lifetime
of AUT. Subsequently we identify executable GUI test cases,
written by the original developers, that refer to i′. Finally, we
seed a VIF by replacing i′ with i. The cascaded model used
in RQ3 is trained on the full dataset in Table I and applied to
the separate repair target applications in Table II.

C. Metrics, Models & Environments

We measure the lexical similarity (i.e., Levenshtein dis-
tance), using the nltk library [10]. To measure semantic
similarity, we use spiral [11] to tokenise view ids and the pre-
trained word2vec embedding model4 to measure the semantic
distances between tokens. As explained in Section II-C, the
similarity between two view ids is the maximum similarity
between subtokens from each view id.

As a classification model, we use Logistic Regression
with lbfgs solver and L2 regularisation implemented in
scikit-learn version 0.23.2 [12]. The empirical evaluation
was conducted on machines equipped with Intel Core i7 and
32GB of RAM. We use the word2vec embedding model in the
gensim library [13], and an open source Python implementa-
tion5 of node2vec.

IV. RESULTS

This section presents the results from our empirical evalu-
ation and answers the research questions.

A. RQ1. Similarity Effectiveness

Table III shows the acc@n with n ∈ {1, 3, 5, 10} by ranking
the post-change ids solely based on individual similarity
metrics. Note that the total number of pre-change ids that
yield these similarity values are different: we can measure
id- and layout-based similarity for all 512 studied pre-change
view ids, but text-based similarity for only 252 view ids
due to the unavailable text properties in some elements. For
fairer comparison between different similarity features, we
also report all acc@n results as percentages against the total
number of relevant view ids (which is shown in the Total row).

We compare all individual features first. The results in
Table III shows the acc@n values of all 13 individual features.
The results show that id-based semantic similarity performs
the best among the individual features, according to acc@n
metrics where n ∈ {3, 5, 10}. For acc@1, structural sim-
ilarity feature based on the all-except-id configuration (see
Section II-D2) performs the best, placing 201 out of 512 VIF
pairs at the top.

However, a closer analysis also reveals that these similarity
features are complementary. Figure 2 contains Venn diagrams
of acc@1 and acc@10 results produced by these four features
(note that structural similarity features are represented by the
best performing all-except-id configuration to avoid visual
clutter in the diagram). While there is a large intersection,
each individual similarity feature also makes unique view
identifications, except for the fact that the text-based similarity
does not uniquely identify any view id changes in acc@1.

The complementary nature of these features can also be
observed when we zoom in to compare different target prop-
erty configurations for the structural similarity features. In
Table III, among the six individual view properties (id, type,
text, style, src, and onClick), structural similarity based

4https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM
5https://github.com/eliorc/node2vec
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TABLE III: Accuracy@n for individual similarity features and their percentage against total number of pre-change ids that
yield the corresponding similarity feature values.

Similarity acc@1 acc@3 acc@5 acc@10 Total

Structural

id 41 (8.0%) 126 (24.6%) 183 (35.7%) 281 (54.9%) 512 (100%)
type 38 (7.4%) 78 (15.2%) 100 (19.5%) 147 (28.7%) 512 (100%)
text 154 (30.1%) 244 (47.7%) 281 (54.9%) 337 (65.8%) 512 (100%)
style 22 (4.3%) 61 (11.9%) 91 (17.8%) 152 (29.7%) 512 (100%)
src 42 (8.2%) 76 (14.8%) 103 (20.1%) 138 (27.0%) 512 (100%)
onClick 14 (2.7%) 20 (3.9%) 29 (5.7%) 43 ( 8.4%) 512 (100%)

all 62 (12.1%) 147 (28.7%) 202 (39.5%) 267 (52.1%) 512 (100%)
all-except-id 201 (39.3%) 284 (55.5%) 320 (62.5%) 370 (72.3%) 512 (100%)
visual 73 (14.3%) 134 (26.2%) 167 (32.6%) 240 (46.9%) 512 (100%)
content 161 (31.4%) 241 (47.1%) 270 (52.7%) 324 (63.3%) 512 (100%)

ID
lexical 145 (28.3%) 221 (43.2%) 247 (48.2%) 293 (57.2%) 512 (100%)
semantic 165 (32.2%) 317 (61.9%) 359 (70.1%) 410 (80.1%) 512 (100%)

Text - 56 (22.2%) 105 (41.7%) 123 (48.8%) 152 (60.3%) 252 (100%)
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Fig. 2: Venn diagram of acc@1 and acc@10 results produced by individual similarity features.
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Fig. 3: Venn diagram of acc@1 and acc@10 results produced using four different types of layout-based structural similarity.

on text property achieves the best ranking performance.
However, Figure 3 shows that different configurations can
make their own contributions to the final results.

TABLE IV: Accuracy@n from classification models using
Logistic Regression, trained on different sets of features.

Accuracy ID ID+Layout ID+Layout+Text

acc@1 226 (44.1%) 344 (67.2%) 367 (71.7%)
acc@3 339 (66.2%) 437 (85.4%) 453 (88.5%)
acc@5 370 (72.3%) 469 (91.6%) 480 (93.8%)
acc@10 407 (79.5%) 493 (96.3%) 502 (98%)

Total 512 (100%) 512 (100%) 512 (100%)

B. RQ2. Model Effectiveness

Table IV contains the results obtained from classification
models based on different sets of features: best results are
typeset in bold. We compare a model that uses id-based lexical
and semantic similarities (ID), a model that uses ten structural
similarity features (six individual similarities and four target
property configurations) in addition to ID (ID+Layout), and
a model that uses text-based semantic similarity in addition
to the others (ID+Layout+Text). Compared to the ID model,
the ID+Layout model shows significantly improved accuracy,
showing that the inclusion of structural similarity helps iden-
tifying the correct post-change view ids. Additional inclusion
of text-based similarity feature further improves the ranking
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Fig. 4: Venn diagram of acc@1 and acc@10 results produced
by cascaded classification models using different scope of
similarity features.

performance, but the margin of improvement is not as large
as that of the ID+Layout model over the ID model. Note that
the ID+Layout+Text model is a cascade model, meaning that
the text based similarity feature is only used when available.

Figure 4 shows a detailed break-down of acc@1 and
acc@10 values achieved by different models. We observe that
ID+Layout+Text model subsumes the other two models for
acc@10. However, with acc@1, all three models contribute
more evenly to the final results.

TABLE V: Result of VIF repair in real-world GUI test cases.

Project Name Pre-change ID Post-change ID Rank

blabbertabber
dummy stop button button pause caption 3
dummy finish button button finish 1
acknowledgementsText aboutText 1

KISS

main kissbar mainKissbar 1
favoritesBar externalFavoriteBar 2
launcher launcherButton 1
searchTextField searchEditText 6
favoritesKissBar embeddedFavoritesBar 1

JustBe-Android

submitButton nextButton 2
tenText maxText 2
dropdown spinner sleep spinner 1
editRepeatPassword editConfirmPassword 6
editLasttName editUsername 9
zeroText minText 3

gini-vision-lib-android gv viewpager gv onboarding viewpager 1

NoiseCapture linearLayout2 graph components layout 2

1 2 3 4 5 6 7 8 9
rank
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Fig. 5: Distribution of repair ranks. (16 test cases)

C. RQ3. Repair Performance

We apply our test case repair technique, described in Sec-
tion II-G, on emulated VIFs following the process described in
Section III-B. Table V presents repair result for each VIF, with

the pre-change id seeded to simulate VIF and the repaired post-
change id that was found by VIFER. Among 16 failing GUI
test cases, seven were fixed within only a single attempt (i.e.,
the correct post-change id is ranked at the top). On average,
a successful repair requires 2.62 repair attempts: all of the 16
test cases could be repaired within ten id replacement attempts.
The distribution of all ranks are shown in Figure 5.

Listing 1 shows the body of a repaired test case from a
single attempt and applied patch. The softmax scores produced
by the classifier for this repair are shown in Figure 6: the
correct post-change view id is chosen with high confidence.

@Test
public void testViewDisplay() {
- onView(withId(R.id.dropdown_spinner))
+ onView(withId(R.id.sleep_spinner))

.check(ViewAssertions.matches(isDisplayed()));
}

Listing 1: Example of a test case repaired the first attempt.
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Fig. 6: Softmax probabilities of the top ten candidate ids,
obtained by classification model to repair the test case in
Listing 1 (probability is adjusted to a log scale).

Another test case, shown in Listing 2, is repaired in the sixth
attempt. Figure 7 shows that the softmax score for the correct
post-change id, searchEditText, is lower than those of the
other five candidate ids. A closer investigation reveals that,
due to the disconnected subgraphs used in structural similarity
computation, some of the similarity features are zeroes for this
particular view id, which affected the final classification results
significantly.

@Test
public void testCanTypeTextIntoSearchBox() {
- onView(withId(R.id.searchTextField))
+ onView(withId(R.id.searchEditText))

.perform(typeText("Test"))

.check(matches(withText("Test")));
}

Listing 2: Example of a test case repaired in the sixth attempt.

V. THREATS TO VALIDITY

Threats to internal validity concern factors that can affect
the observed effects, such as the correctness of the various
similarity metric values computed between GUI elements and
their properties. We rely on widely used public implemen-
tations (scikit-learn [12], nltk [10], node2vec [9]) and
pre-trained word embeddings (gensim [13]) to mitigate these
concerns. Threats to external validity concern factors that
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Fig. 7: Softmax probabilities of the top ten candidate ids,
obtained by classification model to repair the test case in
Listing 2 (probability is adjusted to a log scale).

may prevent wider generalisation of our results. Our study
considers a subset of open source Android apps previously
studied by Coppola et al. [4] as it contains a large available
catalogue of VIFs observed in the wild. We also limit our
scope to open source apps due to licence concerns, as our
current technique requires internal information from apps, such
as the GUI layout tree in the form of XML: barring complete
reverse engineering, different approaches to extract GUI layout
may produce different features from the ones we studied. To
ensure generalisability as much as possible, we try to maintain
our repair scenario as realistic as possible: we reuse existing
GUI test cases with minimum purification, and only use VIF
inducing view id changes that have actually happened in the
development history. However, our results are still specific to
the studied apps. For example, the quality of original GUI
test cases can affect our findings: if the original test cases
are weak, our repair may simply be plausible and not correct.
Finally, threats to construct validity concern whether what we
measure actually reflects what we want to observe. All our
observations are based on simple count based metrics that are
easy to interpret, as well as publicly reviewed ground truth
(Coppola et al. [4]).

VI. RELATED WORK

VIF is part of GUI test case fragility [4]: by fragility, we
mean that the test case can be easily broken by commits to
the program under test that are not bug inducing. It can be
considered as a specific form of test flakiness [14], [15], which
refers to test cases whose outcome changes due to reasons
unrelated to the correctness of the program under test (e.g.,
unintended nondeterminism, or randomness in environmental
factors). However, fragility tends only to break test cases,
whereas flakiness in general means the test result oscillates
between pass and fail randomly. While there are studies that
investigates the relationship between test smells and flaki-
ness [16], a direct repair of test flakiness remains challenging.

While automated repair of programs under test has been
widely studied [17], [18], [19], [20], [21], automated repair
of test cases remains relatively unexplored. A closely related
topic is that of test augmentation, which aims to augment
an existing test suite so that it becomes adequate against an
evolved program [22], [23]. However, augmentation typically

concerns making a test suite more adequate by adding new
test cases, whereas our approach aims at repairing individual
test cases by resolving VIFs.

WATER [24] uses structural information to repair GUI test
script of web applications. When a VIF is encountered, it tries
replacing the lost GUI element with any web elements that
has the same value for at least one key property. However,
repair may be infeasible when there is no GUI element with
the exactly the same set of property values. To avoid such
brittleness, we use structural contexts, which can consider a
wider range of candidates. Recently suggested techniques such
as METER [25] and GUIDER [26] aim to repair obsolete An-
droid GUI test scripts, similarly to VIFER. To match the GUI
elements, METER focuses on visual similarity using computer
vision techniques; GUIDER adds structural information to
METER. However, GUIDER only compares the information
contained in a single GUI element by matching its property
values, whereas VIFER includes both element-wise similarity
and the neighbouring contexts to match view ids.

VII. CONCLUSION

We present a machine learning based test case repair
technique for View Identification Failures (VIFs) to address
Android GUI test case fragility issue in an industry relevant
setting. Our test scenario concerns GUI level smoke test, in
which third-party apps are executed using GUI test scripts
written by smartphone vendors to ensure compatibility of
vendor specific customisations. In such a scenario, since the
test scripts are written in isolation from app development, test
cases are fragile against VIFs. Based on the assumption that
changes made to view ids are not deeply coupled to changes
in the functionality of the app, we hypothesise that pre- and
post-change view ids will be similar to each other, and evaluate
different similarity measures to match pre- and post-change
view ids. We formulate the problem as classification of pre-
and post-change view id pairs, and evaluate a set of similarity
features that can be measured from Android GUI views.
Empirical evaluation of our classification model shows that it
can precisely match about 71.7% of view id changes collected
from real world open source Android apps at the top of the
rank, and can locate the correct post-change view identifier
within top 10 candidates for 98% of the cases. This is a
significant improvement over the currently deployed technique
that is based on lexical similarity only, which matches only
28.3% of the view id changes at the top.
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